Palom started as a tool for registering whole-slide images of the same FFPE section with different IHC stainings.
Installing palom in a fresh conda environment is recommended. Instruction for installing miniconda
Create a named conda environment - palom, in the following example, and activate the environment.
conda create -n palom python=3.10 pip -c conda-forge
conda activate palom
Install openslide in the conda environment.
- For MacOS, use conda-forge channel
conda install openslide -c conda-forge
- For Windows and Linux, use sdvillal channel
conda install openslide -c sdvillal
Install palom from pypi in the conda environment.
python -m pip install palom
Palom CLI tool merges multiple SVS files into a pyramidal OME-TIFF file, with
the option to perform preset stain separation (5 modes are available - output mode
: hematoxylin
, aec
, dab
, grayscale
, color
)
A user-defined configuration YAML file is required for the run. A configuration example can be printed to the console by running
palom-svs show example
input dir: Y:\user\me\projects\data\mihc
output full path: Y:\user\me\projects\analysis\mihc\2021\skin-case-356.ome.tif
reference image:
filename: 20210111/skin_case_356_HEM_C11R3_HEM.svs
output mode: hematoxylin
channel name: Hematoxylin
moving images:
- filename: 20210101/skin_case_356_HEM_C01R1_PD1.svs
output mode: aec
channel name: PD-1
- filename: 20210101/skin_case_356_HEM_C01R2_PDL1.svs
output mode: aec
channel name: PD-L1
To show the configuration schema, run the following command
palom-svs show schema
A helper script is included showing how to automatically generate the configuration file if the SVS files are organized and have specific naming pattern.
Here's an example directory containing many SVS files
Y:\DATA\SARDANA\MIHC\768473\RAW
CBB_SARDANA_768473_C04R1_CD8.svs
KB_SARDANA_768473_C01R1_PD1.svs
KB_SARDANA_768473_C01R2_PDL1.svs
KB_SARDANA_768473_C01R3_Hem.svs
KB_SARDANA_768473_C02R1_CD4.svs
KB_SARDANA_768473_C03R1_CD3.svs
KB_SARDANA_768473_C03R3_DCLAMP.svs
Running the following command to generate the configuration file
palom-svs-helper -i "Y:\DATA\SARDANA\MIHC\768473\RAW" -n "*Hem*" -o "Y:\DATA\SARDANA\MIHC\768473\RAW\palom\768473.ome.tif" -c "Y:\DATA\SARDANA\MIHC\768473\768473.yml"
And the resulting Y:\DATA\SARDANA\MIHC\768473\768473.yml
file
input dir: Y:\DATA\SARDANA\MIHC\768473\RAW
output full path: Y:\DATA\SARDANA\MIHC\768473\RAW\palom\768473.ome.tif
reference image:
filename: .\KB_SARDANA_768473_C01R3_Hem.svs
output mode: hematoxylin
channel name: Hem-C01R3
moving images:
- filename: .\KB_SARDANA_768473_C01R1_PD1.svs
output mode: aec
channel name: PD1-C01R1
- filename: .\KB_SARDANA_768473_C01R2_PDL1.svs
output mode: aec
channel name: PDL1-C01R2
- filename: .\KB_SARDANA_768473_C02R1_CD4.svs
output mode: aec
channel name: CD4-C02R1
- filename: .\KB_SARDANA_768473_C03R1_CD3.svs
output mode: aec
channel name: CD3-C03R1
- filename: .\KB_SARDANA_768473_C03R3_DCLAMP.svs
output mode: aec
channel name: DCLAMP-C03R3
- filename: .\CBB_SARDANA_768473_C04R1_CD8.svs
output mode: aec
channel name: CD8-C04R1
After reviewing the configuration file, process those SVS files by running
palom-svs run -c "Y:\DATA\SARDANA\MIHC\768473\768473.yml"
When the process is finished, a pyramidal OME-TIFF file will be generated along with PNG files showing the feature-based registration results and a log file.
Y:\DATA\SARDANA\MIHC\768473\RAW
│ CBB_SARDANA_768473_C04R1_CD8.svs
│ KB_SARDANA_768473_C01R1_PD1.svs
│ KB_SARDANA_768473_C01R2_PDL1.svs
│ KB_SARDANA_768473_C01R3_Hem.svs
│ KB_SARDANA_768473_C02R1_CD4.svs
│ KB_SARDANA_768473_C03R1_CD3.svs
│ KB_SARDANA_768473_C03R3_DCLAMP.svs
│
└───palom
│ 768473.ome.tif
│
└───qc
01-KB_SARDANA_768473_C01R1_PD1.svs.png
02-KB_SARDANA_768473_C01R2_PDL1.svs.png
03-KB_SARDANA_768473_C02R1_CD4.svs.png
04-KB_SARDANA_768473_C03R1_CD3.svs.png
05-KB_SARDANA_768473_C03R3_DCLAMP.svs.png
06-CBB_SARDANA_768473_C04R1_CD8.svs.png
768473.ome.tif.log
WARNING API may change in the future
import palom
c1r = palom.reader.SvsReader(r'Y:\DATA\SARDANA\MIHC\75684\GG_TNP_75684_D21_C11R3_HEM.svs')
c2r = palom.reader.SvsReader(r'Y:\DATA\SARDANA\MIHC\75684\GG_TNP_75684_D23_C01R1_PD1.svs')
LEVEL = 1
THUMBNAIL_LEVEL = 2
c1rp = palom.color.PyramidHaxProcessor(c1r.pyramid, thumbnail_level=THUMBNAIL_LEVEL)
c2rp = palom.color.PyramidHaxProcessor(c2r.pyramid, thumbnail_level=THUMBNAIL_LEVEL)
c21l = palom.align.Aligner(
c1rp.get_processed_color(LEVEL),
c2rp.get_processed_color(LEVEL),
ref_thumbnail=c1rp.get_processed_color(THUMBNAIL_LEVEL).compute(),
moving_thumbnail=c2rp.get_processed_color(THUMBNAIL_LEVEL).compute(),
ref_thumbnail_down_factor=c1r.level_downsamples[THUMBNAIL_LEVEL] / c1r.level_downsamples[LEVEL],
moving_thumbnail_down_factor=c2r.level_downsamples[THUMBNAIL_LEVEL] / c2r.level_downsamples[LEVEL]
)
c21l.coarse_register_affine()
c21l.compute_shifts()
c21l.constrain_shifts()
c21l.block_affine_matrices_da
c2m = palom.align.block_affine_transformed_moving_img(
c1rp.get_processed_color(LEVEL),
c2rp.get_processed_color(LEVEL, 'aec'),
mxs=c21l.block_affine_matrices_da
)
palom.pyramid.write_pyramid(
[c2m],
r"Y:\DATA\SARDANA\MIHC\75684\mosaic.ome.tif",
pixel_size=c1r.pixel_size*c1r.level_downsamples[LEVEL],
)
import palom
# reference image is a multichannel immunofluoroscence imaging
c1r = palom.reader.OmePyramidReader(r"Z:\P37_Pilot2\P37_S12_Full.ome.tiff")
# moving image is a brightfield imaging (H&E staining) of the same tissue
# section as the reference image
c2r = palom.reader.OmePyramidReader(r"Z:\P37_Pilot2\HE\P37_S12_E033_93_HE.ome.tiff")
# use second-to-the-bottom pyramid level for a quick test; set `LEVEL = 0` for
# processing lowest level pyramid (full resolution)
LEVEL = 1
# choose thumbnail pyramid level for feature-based affine registration as
# initial coarse alignment
# `THUMBNAIL_LEVEL = c1r.get_thumbnail_level_of_size(2000)` might be a good
# starting point
THUMBNAIL_LEVEL = 3
c21l = palom.align.Aligner(
# use the first channel (Hoechst staining) in the reference image as the
# registration reference
ref_img=c1r.read_level_channels(LEVEL, 0),
# use the second channel (G channel) in the moving image, it usually has
# better contrast
moving_img=c2r.read_level_channels(LEVEL, 1),
# select the same channels for the thumbnail images
ref_thumbnail=c1r.read_level_channels(THUMBNAIL_LEVEL, 0).compute(),
moving_thumbnail=c2r.read_level_channels(THUMBNAIL_LEVEL, 1).compute(),
# specify the downsizing factors so that the affine matrix can be scaled to
# match the registration reference
ref_thumbnail_down_factor=c1r.level_downsamples[THUMBNAIL_LEVEL] / c1r.level_downsamples[LEVEL],
moving_thumbnail_down_factor=c2r.level_downsamples[THUMBNAIL_LEVEL] / c2r.level_downsamples[LEVEL]
)
# run feature-based affine registration using thumbnails
c21l.coarse_register_affine(n_keypoints=4000)
# after coarsly affine registered, run phase correlation on each of the
# corresponding chunks (blocks/pieces) to refine translations
c21l.compute_shifts()
# discard incorrect shifts which is usually due to low contrast in the
# background regions; this is needed for WSI but maybe not for ROI images
c21l.constrain_shifts()
# configure the transformation of aligning the moving image to the registration
# reference
c2m = palom.align.block_affine_transformed_moving_img(
ref_img=c1r.read_level_channels(LEVEL, 0),
# select all the three channels (RGB) in moving image to transform
moving_img=c2r.pyramid[LEVEL],
mxs=c21l.block_affine_matrices_da
)
# write the registered images to a pyramidal ome-tiff
palom.pyramid.write_pyramid(
mosaics=[
# select only the first three channels in referece image to be written
# to the output ome-tiff; for writing all channels, use
# `c1r.pyramid[LEVEL]` instead
c1r.read_level_channels(LEVEL, [0, 1, 2]),
c2m
],
output_path=r"Z:\P37_Pilot2\mosaic.ome.tif",
pixel_size=c1r.pixel_size*c1r.level_downsamples[LEVEL]
)