Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added support for unsigned identity quantization #1117

Open
wants to merge 1 commit into
base: dev
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 10 additions & 7 deletions src/finn/transformation/qonnx/qonnx_activation_handlers.py
Original file line number Diff line number Diff line change
Expand Up @@ -455,10 +455,6 @@ def valid_predecessor_op_types(self):
def _check_compatibility(self):
# Gather parameters to check
if self._q_node.op_type == "Quant":
q_inst = getCustomOp(self._q_node)
signed = q_inst.get_nodeattr("signed")
if not signed:
raise ValueError("FINN only supports signed Quant nodes for identity activations.")
if not self._model.get_initializer(self._q_node.input[2]) == 0:
raise ValueError(
"Only Quant nodes with zero-point == 0 "
Expand All @@ -480,6 +476,7 @@ def _calculate_act_bias(self):
if self._q_node.op_type == "Quant":
bit_width = self._model.get_initializer(self._q_node.input[3])
narrow = q_inst.get_nodeattr("narrow")
signed = q_inst.get_nodeattr("signed")
elif self._q_node.op_type == "BipolarQuant":
bit_width = 1.0
else:
Expand All @@ -490,10 +487,13 @@ def _calculate_act_bias(self):
if bit_width == 1.0:
bias = np.array([-0.5], dtype=np_default_dtype)
else:
if narrow:
min_non_scaled_val = -(2 ** (bit_width - 1) - 1)
if not signed:
min_non_scaled_val = 0
else:
min_non_scaled_val = -(2 ** (bit_width - 1))
if narrow:
min_non_scaled_val = -(2 ** (bit_width - 1) - 1)
else:
min_non_scaled_val = -(2 ** (bit_width - 1))
bias = np.array([min_non_scaled_val], dtype=np_default_dtype)
return bias

Expand All @@ -504,6 +504,7 @@ def _calculate_thresholds(self):
if self._q_node.op_type == "Quant":
bit_width = self._model.get_initializer(self._q_node.input[3])
narrow = q_inst.get_nodeattr("narrow")
signed = q_inst.get_nodeattr("signed")
elif self._q_node.op_type == "BipolarQuant":
bit_width = 1.0
else:
Expand Down Expand Up @@ -533,6 +534,8 @@ def _calculate_thresholds(self):
min_threshold = -half_step - step * ((num_thresholds // 2) - 1)
if not narrow:
min_threshold -= step
if not signed:
min_threshold = half_step
for c in range(num_scale_channels):
for t in range(num_thresholds):
thresholds[c][t] = min_threshold[c] + step[c] * t
Expand Down
74 changes: 74 additions & 0 deletions tests/brevitas/test_brevitas_quant_identity_export.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
# Copyright (c) 2024, Advanced Micro Devices, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of Xilinx nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import pytest

import numpy as np
import onnx # noqa
import os
import torch
from brevitas.export import export_qonnx
from brevitas.nn import QuantIdentity
from brevitas.quant.scaled_int import Int8ActPerTensorFloat, Uint8ActPerTensorFloat
from qonnx.core.modelwrapper import ModelWrapper
from qonnx.util.basic import get_preferred_onnx_opset
from qonnx.util.cleanup import cleanup as qonnx_cleanup

import finn.core.onnx_exec as oxe
from finn.transformation.qonnx.convert_qonnx_to_finn import ConvertQONNXtoFINN


@pytest.mark.brevitas_export
@pytest.mark.parametrize("abits", [2, 4, 8])
@pytest.mark.parametrize("ishape", [(1, 15), (1, 32, 1, 1)])
@pytest.mark.parametrize("narrow", [True, False])
@pytest.mark.parametrize("quant", [Int8ActPerTensorFloat, Uint8ActPerTensorFloat])
def test_brevitas_quant_identity_export(abits, ishape, narrow, quant):
export_path = f"test_brevitas_quant_identity_export_{abits}_{narrow}_{quant}.onnx"
b_act = QuantIdentity(act_quant=quant, bit_width=abits, narrow=narrow)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you please change narrow=narrow to narrow_range=narrow? We don't get an error for this because the object can take additional kwargs but it will not be correctly derived and so narrow doesn't get varied in the resulting QuantNode for this test case.


export_qonnx(
b_act,
torch.randn(ishape),
export_path,
opset_version=get_preferred_onnx_opset(),
)
qonnx_cleanup(export_path, out_file=export_path)
model = ModelWrapper(export_path)
model = model.transform(ConvertQONNXtoFINN())

inp_tensor = np.random.uniform(low=-10.0, high=10.0, size=ishape).astype(np.float32)
idict = {model.graph.input[0].name: inp_tensor}
odict = oxe.execute_onnx(model, idict, True)
produced = odict[model.graph.output[0].name]
inp_tensor = torch.from_numpy(inp_tensor).float()
b_act.eval()
expected = b_act.forward(inp_tensor).detach().numpy()

assert np.isclose(produced, expected, atol=1e-3).all()
os.remove(export_path)