Skip to content

Commit

Permalink
copy Evans approach for Groups
Browse files Browse the repository at this point in the history
  • Loading branch information
felixwellen committed Jun 18, 2024
1 parent cee346f commit 51cacff
Show file tree
Hide file tree
Showing 2 changed files with 28 additions and 57 deletions.
2 changes: 2 additions & 0 deletions Cubical/Algebra/CommAlgebra/Base.agda
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,8 @@ record CommAlgebraStr (R : CommRing ℓ) (A : Type ℓ') : Type (ℓ-max ℓ ℓ
infixl 7 _⋆_
infixl 6 _+_

unquoteDecl CommAlgebraStrIsoΣ = declareRecordIsoΣ CommAlgebraStrIsoΣ (quote CommAlgebraStr)

CommAlgebra : (R : CommRing ℓ) ℓ' Type (ℓ-max ℓ (ℓ-suc ℓ'))
CommAlgebra R ℓ' = Σ[ A ∈ Type ℓ' ] CommAlgebraStr R A

Expand Down
83 changes: 26 additions & 57 deletions Cubical/Algebra/CommAlgebra/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@ open import Cubical.Foundations.SIP
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path

open import Cubical.Functions.Embedding

open import Cubical.Data.Sigma

open import Cubical.Reflection.StrictEquiv
Expand Down Expand Up @@ -221,69 +223,37 @@ module CommAlgebraHoms {R : CommRing ℓ} where
compAssocCommAlgebraHom = compAssocAlgebraHom

module CommAlgebraEquivs {R : CommRing ℓ} where
open AlgebraEquivs

compCommAlgebraEquiv : {A : CommAlgebra R ℓ'} {B : CommAlgebra R ℓ''} {C : CommAlgebra R ℓ'''}
CommAlgebraEquiv A B CommAlgebraEquiv B C CommAlgebraEquiv A C
compCommAlgebraEquiv {A = A} {B = B} {C = C} = compAlgebraEquiv {A = CommAlgebra→Algebra A}
{B = CommAlgebra→Algebra B}
{C = CommAlgebra→Algebra C}

open AlgebraEquivs

compCommAlgebraEquiv : {A : CommAlgebra R ℓ'} {B : CommAlgebra R ℓ''} {C : CommAlgebra R ℓ'''}
CommAlgebraEquiv A B CommAlgebraEquiv B C CommAlgebraEquiv A C
compCommAlgebraEquiv {A = A} {B = B} {C = C} = compAlgebraEquiv {A = CommAlgebra→Algebra A}
{B = CommAlgebra→Algebra B}
{C = CommAlgebra→Algebra C}


isSetCommAlgStr : (A : Type ℓ') isSet (CommAlgebraStr R A)
isSetCommAlgStr A =
let open CommAlgebraStr
in isOfHLevelSucIfInhabited→isOfHLevelSuc 1 (λ str
isOfHLevelRetractFromIso 2 CommAlgebraStrIsoΣ $
isSetΣ (str .is-set) λ _
isSetΣ (str .is-set) (λ _
isSetΣ (isSet→ (isSet→ (str .is-set))) λ _
isSetΣ (isSet→ (isSet→ (str .is-set))) (λ _
isSetΣ (isSet→ (str .is-set)) λ _
isSetΣSndProp (isSet→ (isSet→ (str .is-set))) (λ _
isPropIsCommAlgebra R _ _ _ _ _ _))))

-- the CommAlgebra version of uaCompEquiv
module CommAlgebraUAFunctoriality {R : CommRing ℓ} where
open CommAlgebraStr
open CommAlgebraEquivs
{-
CommAlgebra≡ : (A B : CommAlgebra R ℓ') → (
Σ[ p ∈ ⟨ A ⟩ ≡ ⟨ B ⟩ ]
Σ[ q0 ∈ PathP (λ i → p i) (0a (snd A)) (0a (snd B)) ]
Σ[ q1 ∈ PathP (λ i → p i) (1a (snd A)) (1a (snd B)) ]
Σ[ r+ ∈ PathP (λ i → p i → p i → p i) (_+_ (snd A)) (_+_ (snd B)) ]
Σ[ r· ∈ PathP (λ i → p i → p i → p i) (_·_ (snd A)) (_·_ (snd B)) ]
Σ[ s- ∈ PathP (λ i → p i → p i) (-_ (snd A)) (-_ (snd B)) ]
Σ[ s⋆ ∈ PathP (λ i → ⟨ R ⟩ → p i → p i) (_⋆_ (snd A)) (_⋆_ (snd B)) ]
PathP (λ i → IsCommAlgebra R (q0 i) (q1 i) (r+ i) (r· i) (s- i) (s⋆ i)) (isCommAlgebra (snd A))
(isCommAlgebra (snd B)))
≃ (A ≡ B)
CommAlgebra≡ A B = isoToEquiv theIso
where -- commalgebrastr (q0 i) (q1 i) (r+ i) (r· i) (s- i) (s⋆ i) (t i)
open Iso
theIso : Iso _ _
fst (fun theIso (p , q0 , q1 , r+ , r· , s- , s⋆ , t) i) = p i
snd (fun theIso (p , q0 , q1 , r+ , r· , s- , s⋆ , t) i) = Astr
where
Astr : CommAlgebraStr R (p i)
0a Astr = ?
1a Astr = ?
_+_ Astr = ?
_·_ Astr = ?
- Astr = ?
_⋆_ Astr = ?
isCommAlgebra Astr = ?
inv theIso x = cong ⟨_⟩ x , cong (0a ∘ snd) x , cong (1a ∘ snd) x
, cong (_+_ ∘ snd) x , cong (_·_ ∘ snd) x , cong (-_ ∘ snd) x , cong (_⋆_ ∘ snd) x
, cong (isCommAlgebra ∘ snd) x
rightInv theIso _ = ?
leftInv theIso _ = ?

caracCommAlgebra≡ : {A B : CommAlgebra R ℓ'} (p q : A ≡ B) cong ⟨_⟩ p ≡ cong ⟨_⟩ q p ≡ q
caracCommAlgebra≡ {A = A} {B = B} p q P =
sym (transportTransport⁻ (ua (CommAlgebra≡ A B)) p)
∙∙ cong (transport (ua (CommAlgebra≡ A B))) helper
∙∙ transportTransport⁻ (ua (CommAlgebra≡ A B)) q
where
helper : transport (sym (ua (CommAlgebra≡ A B))) p ≡ transport (sym (ua (CommAlgebra≡ A B))) q
helper = Σ≡Prop
(λ _ → isPropΣ
(isOfHLevelPathP' 1 (is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _)
λ _ → isOfHLevelPathP 1 (isPropIsCommAlgebra _ _ _ _ _ _ _) _ _)
(transportRefl (cong ⟨_⟩ p) ∙ P ∙ sym (transportRefl (cong ⟨_⟩ q)))
caracCommAlgebra≡ _ _ α =
isEmbedding→Inj (iso→isEmbedding (invIso ΣPathIsoPathΣ)) _ _ $
Σ≡Prop (λ _ isOfHLevelPathP' 1 (isSetCommAlgStr _) _ _) α

uaCompCommAlgebraEquiv : {A B C : CommAlgebra R ℓ'} (f : CommAlgebraEquiv A B) (g : CommAlgebraEquiv B C)
uaCommAlgebra (compCommAlgebraEquiv f g) ≡ uaCommAlgebra f ∙ uaCommAlgebra g
Expand All @@ -306,7 +276,6 @@ recPT→CommAlgebra 𝓕 σ compCoh = GpdElim.rec→Gpd isGroupoidCommAlgebra
(3-ConstantCompChar 𝓕 (λ x y uaCommAlgebra (σ x y))
λ x y z sym ( cong uaCommAlgebra (compCoh x y z)
∙ uaCompCommAlgebraEquiv (σ x y) (σ y z)))
-}

open CommAlgebraHoms

Expand Down

0 comments on commit 51cacff

Please sign in to comment.