-
Notifications
You must be signed in to change notification settings - Fork 139
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Category of elements as a wild functor to CAT. (#1160)
- Loading branch information
Showing
4 changed files
with
98 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
{-# OPTIONS --safe #-} | ||
|
||
open import Cubical.Foundations.Prelude | ||
open import Cubical.Foundations.HLevels | ||
|
||
open import Cubical.Categories.Category | ||
open Category | ||
open import Cubical.Categories.Functor | ||
open Functor | ||
open import Cubical.Categories.NaturalTransformation | ||
open NatTrans | ||
open import Cubical.Categories.Instances.Functors | ||
open import Cubical.Categories.Instances.Sets | ||
open import Cubical.Categories.Constructions.Elements | ||
open Covariant | ||
|
||
open import Cubical.WildCat.Functor | ||
open import Cubical.WildCat.Instances.Categories | ||
open import Cubical.WildCat.Instances.NonWild | ||
|
||
module Cubical.Categories.Constructions.Elements.Properties where | ||
|
||
variable | ||
ℓC ℓC' ℓD ℓD' ℓS : Level | ||
C : Category ℓC ℓC' | ||
D : Category ℓD ℓD' | ||
|
||
∫-hom : ∀ {F G : Functor C (SET ℓS)} → NatTrans F G → Functor (∫ F) (∫ G) | ||
Functor.F-ob (∫-hom ν) (c , f) = c , N-ob ν c f | ||
Functor.F-hom (∫-hom ν) {c1 , f1} {c2 , f2} (χ , ef) = χ , sym (funExt⁻ (N-hom ν χ) f1) ∙ cong (N-ob ν c2) ef | ||
Functor.F-id (∫-hom {G = G} ν) {c , f} = ElementHom≡ G refl | ||
Functor.F-seq (∫-hom {G = G} ν) {c1 , f1} {c2 , f2} {c3 , f3} (χ12 , ef12) (χ23 , ef23) = | ||
ElementHom≡ G refl | ||
|
||
∫-id : ∀ (F : Functor C (SET ℓS)) → ∫-hom (idTrans F) ≡ Id | ||
∫-id F = Functor≡ | ||
(λ _ → refl) | ||
λ {(c1 , f1)} {(c2 , f2)} (χ , ef) → ElementHom≡ F refl | ||
|
||
∫-seq : ∀ {C : Category ℓC ℓC'} {F G H : Functor C (SET ℓS)} → (μ : NatTrans F G) → (ν : NatTrans G H) | ||
→ ∫-hom (seqTrans μ ν) ≡ funcComp (∫-hom ν) (∫-hom μ) | ||
∫-seq {H = H} μ ν = Functor≡ | ||
(λ _ → refl) | ||
λ {(c1 , f1)} {(c2 , f2)} (χ , ef) → ElementHom≡ H refl | ||
|
||
module _ (C : Category ℓC ℓC') (ℓS : Level) where | ||
|
||
ElementsWildFunctor : WildFunctor (AsWildCat (FUNCTOR C (SET ℓS))) (CatWildCat (ℓ-max ℓC ℓS) (ℓ-max ℓC' ℓS)) | ||
WildFunctor.F-ob ElementsWildFunctor = ∫_ | ||
WildFunctor.F-hom ElementsWildFunctor = ∫-hom | ||
WildFunctor.F-id ElementsWildFunctor {F} = ∫-id F | ||
WildFunctor.F-seq ElementsWildFunctor μ ν = ∫-seq μ ν |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
{-# OPTIONS --safe #-} | ||
|
||
module Cubical.WildCat.Instances.NonWild where | ||
|
||
open import Cubical.Foundations.Prelude | ||
|
||
open import Cubical.Categories.Category.Base | ||
open import Cubical.Categories.Functor.Base | ||
|
||
open import Cubical.WildCat.Base | ||
open import Cubical.WildCat.Functor | ||
|
||
module _ {ℓ ℓ' : Level} (C : Category ℓ ℓ') where | ||
|
||
open WildCat | ||
open Category | ||
|
||
AsWildCat : WildCat ℓ ℓ' | ||
ob AsWildCat = ob C | ||
Hom[_,_] AsWildCat = Hom[_,_] C | ||
id AsWildCat = id C | ||
_⋆_ AsWildCat = _⋆_ C | ||
⋆IdL AsWildCat = ⋆IdL C | ||
⋆IdR AsWildCat = ⋆IdR C | ||
⋆Assoc AsWildCat = ⋆Assoc C | ||
|
||
|
||
module _ {ℓC ℓC' ℓD ℓD' : Level} {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} (F : Functor C D) where | ||
|
||
open Functor | ||
open WildFunctor | ||
|
||
AsWildFunctor : WildFunctor (AsWildCat C) (AsWildCat D) | ||
F-ob AsWildFunctor = F-ob F | ||
F-hom AsWildFunctor = F-hom F | ||
F-id AsWildFunctor = F-id F | ||
F-seq AsWildFunctor = F-seq F |