-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
br_inep_saeb: expandir cobertura temporal dic
- Loading branch information
Showing
1 changed file
with
203 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
# Script para alterar o formato da cobertura temporal do dicionario saeb | ||
# O formato será expandido, cada linha será um ano | ||
import basedosdados as bd | ||
import re | ||
import itertools | ||
import pandas as pd | ||
import os | ||
|
||
OUTPUT = os.path.join(os.getcwd(), "output") | ||
|
||
os.makedirs(OUTPUT, exist_ok=True) | ||
|
||
df = bd.read_sql( | ||
"select * from `basedosdados-dev.br_inep_saeb_staging.dicionario`", | ||
billing_project_id="basedosdados-dev", | ||
) | ||
|
||
df = df.loc[(df["cobertura_temporal"] != "1") & (df["cobertura_temporal"] != "D"),] | ||
|
||
|
||
def parse_temporal_coverage(temporal_coverage: str) -> list[dict[str, int]]: | ||
def parse_common(value: str) -> dict[str, int]: | ||
# single value | ||
# (y) | ||
if value[0] == "(": | ||
return dict(temporal_unit=int(value[1])) | ||
|
||
# single year | ||
if len(value) == 4: | ||
return dict(single_year=int(value)) | ||
|
||
# x, x | ||
# if "," in value: | ||
# # TODO: Generic format | ||
# return None | ||
|
||
# x(y) or x(y)z | ||
if "(" in value: | ||
pattern_temporal_unit = r"\((\d+)\)" | ||
# Split and drop empty strings | ||
parts: list[str] = [ | ||
i for i in re.split(pattern_temporal_unit, value) if len(i) > 0 | ||
] | ||
|
||
assert len(parts) <= 3, f"Error: {temporal_coverage=}" | ||
|
||
# x(y), 2005(2) | ||
if len(parts) == 2: | ||
return dict(start_year=int(parts[0]), temporal_unit=int(parts[1])) | ||
|
||
return dict( | ||
start_year=int(parts[0]), | ||
temporal_unit=int(parts[1]), | ||
end_year=int(parts[2]), | ||
) | ||
|
||
raise Exception(f"Failed to parse {temporal_coverage=}") | ||
|
||
if "," in temporal_coverage: | ||
return [parse_common(i.strip()) for i in temporal_coverage.split(",")] | ||
else: | ||
return [parse_common(temporal_coverage)] | ||
|
||
|
||
# Examples: | ||
# {'start_year': 2013, 'temporal_unit': 2, 'end_year': 2017} | ||
def build_date_range( | ||
temporal_coverage: dict[str, int], start_year: int, latest_year: int | ||
): | ||
if ( | ||
"start_year" in temporal_coverage | ||
and "temporal_unit" in temporal_coverage | ||
and "end_year" in temporal_coverage | ||
): | ||
return list( | ||
range( | ||
temporal_coverage["start_year"], | ||
temporal_coverage["end_year"] + temporal_coverage["temporal_unit"], | ||
temporal_coverage["temporal_unit"], | ||
) | ||
) | ||
elif "start_year" in temporal_coverage and "temporal_unit" in temporal_coverage: | ||
return list( | ||
range( | ||
temporal_coverage["start_year"], | ||
latest_year + temporal_coverage["temporal_unit"], | ||
temporal_coverage["temporal_unit"], | ||
) | ||
) | ||
elif "temporal_unit" in temporal_coverage: | ||
return list( | ||
range( | ||
start_year, | ||
latest_year + temporal_coverage["temporal_unit"], | ||
temporal_coverage["temporal_unit"], | ||
) | ||
) | ||
elif "single_year" in temporal_coverage: | ||
return [temporal_coverage["single_year"]] | ||
|
||
|
||
dfs = dict( | ||
[ | ||
# Table id is wrong | ||
(table_id.replace("aluno_ef_2_ano", "aluno_ef_2ano"), df_by_table) | ||
for (table_id, df_by_table) in df.groupby("id_tabela") | ||
] | ||
) | ||
|
||
backend = bd.Backend( | ||
graphql_url="https://staging.backend.basedosdados.org/api/v1/graphql" | ||
) | ||
|
||
|
||
def transform_df(table_id: str, df: pd.DataFrame) -> pd.DataFrame: | ||
d = df.copy() | ||
table_slug = backend._get_table_id_from_name( | ||
gcp_dataset_id="br_inep_saeb", gcp_table_id=table_id | ||
) | ||
if not isinstance(table_slug, str): | ||
raise Exception(f"Not found slug fo {table_id=}") | ||
|
||
response = backend._execute_query( | ||
query=""" | ||
query($table_id: ID) { | ||
allTable(id: $table_id) { | ||
edges { | ||
node { | ||
name, | ||
coverages { | ||
edges { | ||
node { | ||
datetimeRanges { | ||
edges { | ||
node { | ||
id, | ||
startYear, | ||
endYear | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
""", | ||
variables={"table_id": table_slug}, | ||
) | ||
|
||
payload = backend._simplify_graphql_response(response)["allTable"][0]["coverages"][ | ||
0 | ||
]["datetimeRanges"][0] | ||
|
||
latest_year = payload["endYear"] | ||
start_year = payload["startYear"] | ||
|
||
d["temporal_coverage_parsed"] = d["cobertura_temporal"].apply( | ||
lambda x: list( | ||
itertools.chain( | ||
*[ # type: ignore | ||
build_date_range(i, start_year=start_year, latest_year=latest_year) | ||
for i in parse_temporal_coverage(x) | ||
] | ||
) | ||
) | ||
) | ||
return d | ||
|
||
|
||
new_arch = { | ||
table_id: transform_df(table_id, df_by_table) | ||
for (table_id, df_by_table) in dfs.items() | ||
} | ||
|
||
new_arch_5ano = new_arch["aluno_ef_5ano"].copy() | ||
|
||
new_arch_5ano["temporal_coverage_parsed"] = new_arch_5ano["temporal_coverage_parsed"] | ||
|
||
counts = ( | ||
new_arch_5ano[["cobertura_temporal", "temporal_coverage_parsed"]] | ||
.value_counts(dropna=False) | ||
.reset_index() | ||
) | ||
|
||
counts[["cobertura_temporal", "temporal_coverage_parsed"]] | ||
|
||
new_arch_5ano.drop(columns=["cobertura_temporal"]).explode( | ||
"temporal_coverage_parsed" | ||
).rename(columns={"temporal_coverage_parsed": "cobertura_temporal"}).to_csv( | ||
os.path.join(OUTPUT, "dicionario.csv"), index=False | ||
) | ||
|
||
tb = bd.Table(dataset_id="br_inep_saeb", table_id="dicionario") | ||
|
||
tb.create( | ||
os.path.join(OUTPUT, "dicionario.csv"), | ||
if_table_exists="replace", | ||
if_storage_data_exists="replace", | ||
) |