Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Flux Capacitor Model #33902

Open
wants to merge 10 commits into
base: master
Choose a base branch
from
22 changes: 17 additions & 5 deletions selfdrive/modeld/fill_model_msg.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,15 @@

ConfidenceClass = log.ModelDataV2.ConfidenceClass

def curv_from_psis(psi_target, psi_rate, vego, delay):
curv_from_psi = psi_target / ((vego + 1e-3) * delay) # epsilon to prevent divide-by-zero
return 2*curv_from_psi - psi_rate / (1e-3 + vego)

def get_curvature_from_plan(plan, vego, delay):
psi_target = np.interp(delay, ModelConstants.T_IDXS, plan[:, Plan.T_FROM_CURRENT_EULER][:, 2])
psi_rate = plan[:, Plan.ORIENTATION_RATE][0, 2]
return curv_from_psis(psi_target, psi_rate, vego, delay)

class PublishState:
def __init__(self):
self.disengage_buffer = np.zeros(ModelConstants.CONFIDENCE_BUFFER_LEN*ModelConstants.DISENGAGE_WIDTH, dtype=np.float32)
Expand Down Expand Up @@ -55,14 +64,17 @@ def fill_lane_line_meta(builder, lane_lines, lane_line_probs):
builder.rightProb = lane_line_probs[2]

def fill_model_msg(base_msg: capnp._DynamicStructBuilder, extended_msg: capnp._DynamicStructBuilder,
net_output_data: dict[str, np.ndarray], publish_state: PublishState,
vipc_frame_id: int, vipc_frame_id_extra: int, frame_id: int, frame_drop: float,
timestamp_eof: int, model_execution_time: float, valid: bool) -> None:
net_output_data: dict[str, np.ndarray], v_ego: float, delay: float,
publish_state: PublishState, vipc_frame_id: int, vipc_frame_id_extra: int,
frame_id: int, frame_drop: float, timestamp_eof: int, model_execution_time: float,
valid: bool) -> None:
frame_age = frame_id - vipc_frame_id if frame_id > vipc_frame_id else 0
frame_drop_perc = frame_drop * 100
extended_msg.valid = valid
base_msg.valid = valid

desired_curv = float(get_curvature_from_plan(net_output_data['plan'][0], v_ego, delay))

driving_model_data = base_msg.drivingModelData

driving_model_data.frameId = vipc_frame_id
Expand All @@ -71,7 +83,7 @@ def fill_model_msg(base_msg: capnp._DynamicStructBuilder, extended_msg: capnp._D
driving_model_data.modelExecutionTime = model_execution_time

action = driving_model_data.action
action.desiredCurvature = float(net_output_data['desired_curvature'][0,0])
action.desiredCurvature = desired_curv

modelV2 = extended_msg.modelV2
modelV2.frameId = vipc_frame_id
Expand Down Expand Up @@ -106,7 +118,7 @@ def fill_model_msg(base_msg: capnp._DynamicStructBuilder, extended_msg: capnp._D

# lateral planning
action = modelV2.action
action.desiredCurvature = float(net_output_data['desired_curvature'][0,0])
action.desiredCurvature = desired_curv

# times at X_IDXS according to model plan
PLAN_T_IDXS = [np.nan] * ModelConstants.IDX_N
Expand Down
14 changes: 2 additions & 12 deletions selfdrive/modeld/modeld.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,14 +57,11 @@ def __init__(self, context: CLContext):
self.prev_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
self.full_features_20Hz = np.zeros((ModelConstants.FULL_HISTORY_BUFFER_LEN, ModelConstants.FEATURE_LEN), dtype=np.float32)
self.desire_20Hz = np.zeros((ModelConstants.FULL_HISTORY_BUFFER_LEN + 1, ModelConstants.DESIRE_LEN), dtype=np.float32)
self.prev_desired_curv_20hz = np.zeros((ModelConstants.FULL_HISTORY_BUFFER_LEN + 1, ModelConstants.PREV_DESIRED_CURV_LEN), dtype=np.float32)

# img buffers are managed in openCL transform code
self.inputs = {
'desire': np.zeros(ModelConstants.DESIRE_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32),
'lateral_control_params': np.zeros(ModelConstants.LATERAL_CONTROL_PARAMS_LEN, dtype=np.float32),
'prev_desired_curv': np.zeros(ModelConstants.PREV_DESIRED_CURV_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
'features_buffer': np.zeros(ModelConstants.HISTORY_BUFFER_LEN * ModelConstants.FEATURE_LEN, dtype=np.float32),
}

Expand Down Expand Up @@ -100,7 +97,6 @@ def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_
self.inputs['desire'][:] = self.desire_20Hz.reshape((25,4,-1)).max(axis=1).flatten()

self.inputs['traffic_convention'][:] = inputs['traffic_convention']
self.inputs['lateral_control_params'][:] = inputs['lateral_control_params']

self.model.setInputBuffer("input_imgs", self.frame.prepare(buf, transform.flatten(), self.model.getCLBuffer("input_imgs")))
self.model.setInputBuffer("big_input_imgs", self.wide_frame.prepare(wbuf, transform_wide.flatten(), self.model.getCLBuffer("big_input_imgs")))
Expand All @@ -114,13 +110,8 @@ def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_
self.full_features_20Hz[:-1] = self.full_features_20Hz[1:]
self.full_features_20Hz[-1] = outputs['hidden_state'][0, :]

self.prev_desired_curv_20hz[:-1] = self.prev_desired_curv_20hz[1:]
self.prev_desired_curv_20hz[-1] = outputs['desired_curvature'][0, :]

idxs = np.arange(-4,-100,-4)[::-1]
self.inputs['features_buffer'][:] = self.full_features_20Hz[idxs].flatten()
# TODO model only uses last value now, once that changes we need to input strided action history buffer
self.inputs['prev_desired_curv'][-ModelConstants.PREV_DESIRED_CURV_LEN:] = 0. * self.prev_desired_curv_20hz[-4, :]
return outputs


Expand Down Expand Up @@ -231,7 +222,6 @@ def main(demo=False):
is_rhd = sm["driverMonitoringState"].isRHD
frame_id = sm["roadCameraState"].frameId
v_ego = max(sm["carState"].vEgo, 0.)
lateral_control_params = np.array([v_ego, steer_delay], dtype=np.float32)
if sm.updated["liveCalibration"] and sm.seen['roadCameraState'] and sm.seen['deviceState']:
device_from_calib_euler = np.array(sm["liveCalibration"].rpyCalib, dtype=np.float32)
dc = DEVICE_CAMERAS[(str(sm['deviceState'].deviceType), str(sm['roadCameraState'].sensor))]
Expand Down Expand Up @@ -262,7 +252,6 @@ def main(demo=False):
inputs:dict[str, np.ndarray] = {
'desire': vec_desire,
'traffic_convention': traffic_convention,
'lateral_control_params': lateral_control_params,
}

mt1 = time.perf_counter()
Expand All @@ -274,7 +263,8 @@ def main(demo=False):
modelv2_send = messaging.new_message('modelV2')
drivingdata_send = messaging.new_message('drivingModelData')
posenet_send = messaging.new_message('cameraOdometry')
fill_model_msg(drivingdata_send, modelv2_send, model_output, publish_state, meta_main.frame_id, meta_extra.frame_id, frame_id,
fill_model_msg(drivingdata_send, modelv2_send, model_output, v_ego, steer_delay,
publish_state, meta_main.frame_id, meta_extra.frame_id, frame_id,
frame_drop_ratio, meta_main.timestamp_eof, model_execution_time, live_calib_seen)

desire_state = modelv2_send.modelV2.meta.desireState
Expand Down
4 changes: 2 additions & 2 deletions selfdrive/modeld/models/supercombo.onnx
Git LFS file not shown
Loading