The project explore the findings in the paper Revisiting Local Descriptor based Image-to-Class Measure for Few-shot Learning by Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao and Jiebo Luo. In CVPR 2019.
- Linux
- Python 3.8 - 3.10
- All library dependencies from
requirements.txt
- Clone this repo:
git clone https://github.com/d33dler/spp.git
- Install
requirements.txt
dependencies - cd to the
executables
folder and runpython exec.py --help
to see the available options.
For training and testing on different conditions you must edit the model root config.
Refer to models/architectures/configs/*
for examples
- Train a model based on Conv64F:
python exec.py --arch DN_X --config models/architectures/DN4_Vanilla --dataset_dir your/dataset/path --data_name aName \
--mode train --epochs 30 --dengine --refit_dengine
- Test the model (omit
--dengine
to use the original DN4 and omit--refit_dengine
to use the pre-trained dengine):
python exec.py --arch DN_X --config models/architectures/DN4_Vanilla --dataset_dir your/dataset/path --data_name aName \
--mode test --dengine --resume your/model/path.pth.tar
- Add config storing in model
- Add more datasets
- Add more architectures
- Add more experiments