Skip to content

Image Deblurring by Exploring In-depth Properties of Transformer (IEEE TNNLS)

Notifications You must be signed in to change notification settings

erfect2020/TransformerPerceptualLoss

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Transformer Perceptual Loss for Image Deblurring


This repository is an official implementation of Image Deblurring by Exploring In-depth Properties of Transformer.

Basic usage

from loss.deblur_loss import ReconstructPerceptualLoss as ReconstructLoss



model = yourmodel()
criterion = ReconstructLoss(opt)
model = model.cuda()
criterion.pretrain_mae = criterion.pretrain_mae.to(torch.device('cuda'))

for index, train_data in tqdm(enumerate(train_loader)):
    gt, b_img = train_data
    b_img = b_img.cuda()
    gt_img = gt.cuda()
    x = b_img
    recover_img = model(x)
    losses = criterion(recover_img, gt_img)
    grad_loss = losses["total_loss"]
    optimizer.zero_grad()
    grad_loss.backward()
    optimizer.step()

If this repo help you, please cite us:

@article{liang2024image,
  title={Image deblurring by exploring in-depth properties of transformer},
  author={Liang, Pengwei and Jiang, Junjun and Liu, Xianming and Ma, Jiayi},
  journal={IEEE Transactions on Neural Networks and Learning Systems},
  year={2024},
  publisher={IEEE}
}

About

Image Deblurring by Exploring In-depth Properties of Transformer (IEEE TNNLS)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages