Skip to content
This repository has been archived by the owner on Oct 30, 2024. It is now read-only.

Utilities for handling Ethereum keys

License

Notifications You must be signed in to change notification settings

ethereumjs/ethereumjs-wallet

Repository files navigation

ethereumjs-wallet

Warning

The repository has been merged into ethereumjs-monorepo. Please head to the new repo for updates.


A lightweight wallet implementation. At the moment it supports key creation and conversion between various formats.

It is complemented by the following packages:

Motivations are:

  • be lightweight
  • work in a browser
  • use a single, maintained version of crypto library (and that should be in line with @ethereumjs/util and @ethereumjs/tx)
  • support import/export between various wallet formats
  • support BIP32 HD keys

Features not supported:

  • signing transactions
  • managing storage (neither in node.js or the browser)

Wallet API

For information about the Wallet's API, please go to ./docs/classes/wallet.md.

You can import the Wallet class like this

Node.js / ES6:

const Wallet = require('ethereumjs-wallet').default

ESM / TypeScript:

import Wallet from 'ethereumjs-wallet'

Thirdparty API

Importing various third party wallets is possible through the thirdparty submodule:

Node.js / ES5:

const { thirdparty } = require('ethereumjs-wallet')

ESM / TypeScript:

import { thirdparty } from 'ethereumjs-wallet'

Please go to ./docs/README.md for more info.

HD Wallet API

To use BIP32 HD wallets, first include the hdkey submodule:

Node.js / ES5:

const { hdkey } = require('ethereumjs-wallet')

ESM / TypeScript:

import { hdkey } from 'ethereumjs-wallet'

Please go to ./docs/classes/ethereumhdkey.md for more info.

Provider Engine

Provider Engine is not very actively maintained and support has been removed along v1.0.0 release, see issue #115 for context.

You can use the the old src/provider-engine.ts code (see associated PR) as some boilerplate for your own integration if needed.

Remarks about toV3

The options is an optional object hash, where all the serialization parameters can be fine tuned:

  • uuid - UUID. One is randomly generated.
  • salt - Random salt for the kdf. Size must match the requirements of the KDF (key derivation function). Random number generated via crypto.getRandomBytes if nothing is supplied.
  • iv - Initialization vector for the cipher. Size must match the requirements of the cipher. Random number generated via crypto.getRandomBytes if nothing is supplied.
  • kdf - The key derivation function, see below.
  • dklen - Derived key length. For certain cipher settings, this must match the block sizes of those.
  • cipher - The cipher to use. Names must match those of supported by OpenSSL, e.g. aes-128-ctr or aes-128-cbc.

Depending on the kdf selected, the following options are available too.

For pbkdf2:

  • c - Number of iterations. Defaults to 262144.
  • prf - The only supported (and default) value is hmac-sha256. So no point changing it.

For scrypt:

  • n - Iteration count. Defaults to 262144.
  • r - Block size for the underlying hash. Defaults to 8.
  • p - Parallelization factor. Defaults to 1.

The following settings are favoured by the Go Ethereum implementation and we default to the same:

  • kdf: scrypt
  • dklen: 32
  • n: 262144
  • r: 8
  • p: 1
  • cipher: aes-128-ctr

EthereumJS

See our organizational documentation for an introduction to EthereumJS as well as information on current standards and best practices.

If you want to join for work or do improvements on the libraries have a look at our contribution guidelines.

License

MIT License

Copyright (C) 2016 Alex Beregszaszi