Skip to content

Commit

Permalink
Add preventive and corrective SCOPF (#67)
Browse files Browse the repository at this point in the history
- migrate to MadNLP 0.6
- migrate to CUDA 4.*
- migrate to ExaPF 0.9
- add preventive and corrective SCOPF
- add script for real-time SCOPF

---------

Co-authored-by: Michel Schanen <mschanen@anl.gov>
  • Loading branch information
frapac and michel2323 authored Sep 27, 2023
1 parent ac946ee commit 2870d90
Show file tree
Hide file tree
Showing 32 changed files with 2,454 additions and 72 deletions.
1 change: 0 additions & 1 deletion .github/workflows/action.yml
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,6 @@ jobs:
env:
CUDA_VISIBLE_DEVICES: 1
JULIA_DEPOT_PATH: /scratch/github-actions/julia_depot_argos
JULIA_CUDA_USE_BINARYBUILDER: false
runs-on: self-hosted
strategy:
matrix:
Expand Down
14 changes: 6 additions & 8 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -14,20 +14,18 @@ Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"

[compat]
CUDA = "^3.8"
CUDAKernels = "0.4"
ExaPF = "~0.8"
CUDA = "4.1"
ExaPF = "~0.9.3"
FiniteDiff = "2.7"
Ipopt = "1"
KernelAbstractions = "0.8"
MadNLP = "~0.5.2"
KernelAbstractions = "0.9"
MadNLP = "0.7"
MathOptInterface = "1"
NLPModels = "0.18"
NLPModels = ">= 0.18"
julia = "1.6"

[extras]
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
CUDAKernels = "72cfdca4-0801-4ab0-bf6a-d52aa10adc57"
DelimitedFiles = "8bb1440f-4735-579b-a4ab-409b98df4dab"
FiniteDiff = "6a86dc24-6348-571c-b903-95158fe2bd41"
Ipopt = "b6b21f68-93f8-5de0-b562-5493be1d77c9"
Expand All @@ -36,4 +34,4 @@ Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["Test", "CUDA", "CUDAKernels", "DelimitedFiles", "FiniteDiff", "Ipopt", "LazyArtifacts", "Random"]
test = ["Test", "CUDA", "DelimitedFiles", "FiniteDiff", "Ipopt", "LazyArtifacts", "Random"]
1 change: 1 addition & 0 deletions docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ makedocs(
),
modules = [Argos],
repo = "https://github.com/exanauts/Argos.jl/blob/{commit}{path}#{line}",
doctest=false,
checkdocs = :exports,
pages = [
"Home" => "index.md",
Expand Down
1 change: 0 additions & 1 deletion lib/ArgosCUDA.jl/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@ version = "0.1.0"
[deps]
Argos = "ef244971-cf80-42b0-9762-2c2c832df5d5"
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
CUDAKernels = "72cfdca4-0801-4ab0-bf6a-d52aa10adc57"
CUSOLVERRF = "a8cc9031-bad2-4722-94f5-40deabb4245c"
ExaPF = "0cf0e50c-a82e-488f-ac7e-41ffdff1b8aa"
KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c"
Expand Down
4 changes: 2 additions & 2 deletions lib/ArgosCUDA.jl/src/ArgosCUDA.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,8 @@ using CUDA
using CUDA.CUSPARSE
using CUSOLVERRF

using KernelAbstractions
using CUDAKernels
import KernelAbstractions as KA
import KernelAbstractions: @kernel, @index

using ExaPF
const LS = ExaPF.LinearSolvers
Expand Down
42 changes: 21 additions & 21 deletions lib/ArgosCUDA.jl/src/kernels.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,8 @@ end
function Argos.transfer2tril!(hessvals::AbstractVector, H::CuSparseMatrixCSR, csc2tril)
Hz = nonzeros(H)
ndrange = (length(hessvals),)
ev = _map2vec_kernel!(CUDADevice())(hessvals, Hz, csc2tril; ndrange=ndrange)
wait(ev)
_map2vec_kernel!(CUDABackend())(hessvals, Hz, csc2tril; ndrange=ndrange)
KA.synchronize(CUDABackend())
end


Expand All @@ -17,8 +17,8 @@ end
function Argos.fixed!(dest::CuVector, ind_fixed, val::Number)
length(ind_fixed) == 0 && return
g_ind_fixed = ind_fixed |> CuArray
ev = _fixed_kernel!(CUDADevice())(dest, g_ind_fixed, val; ndrange=length(ind_fixed))
wait(ev)
_fixed_kernel!(CUDABackend())(dest, g_ind_fixed, val; ndrange=length(ind_fixed))
KA.synchronize(CUDABackend())
end


Expand All @@ -30,8 +30,8 @@ function Argos.copy_index!(dest::CuVector{T}, src::CuVector{T}, idx) where T
@assert length(dest) == length(idx)
ndrange = (length(dest),)
idx_d = CuVector(idx)
ev = _copy_index_kernel!(CUDADevice())(dest, src, idx_d; ndrange=ndrange)
wait(ev)
_copy_index_kernel!(CUDABackend())(dest, src, idx_d; ndrange=ndrange)
KA.synchronize(CUDABackend())
end


Expand All @@ -43,8 +43,8 @@ end
function Argos.fixed_diag!(dest::CuMatrix, ind_fixed, val::Number)
length(ind_fixed) == 0 && return
g_ind_fixed = ind_fixed |> CuArray
ev = _fixed_diag_kernel!(CUDADevice())(dest, g_ind_fixed, val; ndrange=length(ind_fixed))
wait(ev)
_fixed_diag_kernel!(CUDABackend())(dest, g_ind_fixed, val; ndrange=length(ind_fixed))
KA.synchronize(CUDABackend())
end

@kernel function _transfer_auglag_hessian!(dest, H, J, ρ, n, m)
Expand All @@ -70,8 +70,8 @@ function Argos.transfer_auglag_hessian!(
@assert size(ρ, 1) == m

ndrange = (n+m, n)
ev = _transfer_auglag_hessian!(CUDADevice())(dest, H, J, ρ, n, m, ndrange=ndrange, dependencies=Event(CUDADevice()))
wait(ev)
_transfer_auglag_hessian!(CUDABackend())(dest, H, J, ρ, n, m, ndrange=ndrange)
KA.synchronize(CUDABackend())
return
end

Expand All @@ -84,11 +84,11 @@ function Argos.set_batch_tangents!(seeds::CuMatrix, offset, n, n_batches)
@assert offset + n_batches <= n
ndrange = (n_batches)
fill!(seeds, 0.0)
ev = _batch_tangents_kernel!(CUDADevice())(
_batch_tangents_kernel!(CUDABackend())(
seeds, offset, n_batches;
ndrange=ndrange, dependencies=Event(CUDADevice()),
ndrange=ndrange,
)
wait(ev)
KA.synchronize(CUDABackend())
return
end

Expand All @@ -115,11 +115,11 @@ function Argos.tgtmul!(
k = size(z, 2)
ndrange = (n, k)
y .*= beta
ev = _tgtmul_1_kernel!(CUDADevice())(
_tgtmul_1_kernel!(CUDABackend())(
y, A.rowPtr, A.colVal, A.nzVal, z, w, alpha, nz, nw;
ndrange=ndrange, dependencies=Event(CUDADevice()),
ndrange=ndrange,
)
wait(ev)
KA.synchronize(CUDABackend())
end


Expand Down Expand Up @@ -150,11 +150,11 @@ function Argos.tgtmul!(
ndrange = (n, k)
yx .*= beta
yu .*= beta
ev = _tgtmul_2_kernel!(CUDADevice())(
_tgtmul_2_kernel!(CUDABackend())(
yx, yu, A.rowPtr, A.colVal, A.nzVal, z, w, alpha, nz, nw;
ndrange=ndrange, dependencies=Event(CUDADevice()),
ndrange=ndrange,
)
wait(ev)
KA.synchronize(CUDABackend())
end


Expand All @@ -171,11 +171,11 @@ end

function Argos.update!(K::Argos.HJDJ, A, D, Σ)
m = size(A, 1)
ev = _scale_transpose_kernel!(CUDADevice())(
ev = _scale_transpose_kernel!(CUDABackend())(
K.Jt.nzVal, A.rowPtr, A.colVal, A.nzVal, D, K.transperm,
ndrange=(m, 1),
)
wait(ev)
KA.synchronize(ev)
spgemm!('N', 'N', 1.0, K.Jt, A, 0.0, K.JtJ, 'O')
K.Σ .= Σ
end
16 changes: 11 additions & 5 deletions lib/ArgosCUDA.jl/src/reduction.jl
Original file line number Diff line number Diff line change
Expand Up @@ -24,21 +24,21 @@ end

function Argos.update!(K::Argos.HJDJ, A, D, Σ)
m = size(A, 1)
ev = _scale_transpose_kernel!(CUDADevice())(
_scale_transpose_kernel!(CUDABackend())(
K.Jt.nzVal, A.rowPtr, A.colVal, A.nzVal, D, K.transperm,
ndrange=(m, 1),
)
wait(ev)
KA.synchronize(CUDABackend())
spgemm!('N', 'N', 1.0, K.Jt, A, 0.0, K.JtJ, 'O')
K.Σ .= Σ
end
function Argos.update!(K::Argos.HJDJ, A, D)
m = size(A, 1)
ev = _scale_transpose_kernel!(CUDADevice())(
_scale_transpose_kernel!(CUDABackend())(
K.Jt.nzVal, A.rowPtr, A.colVal, A.nzVal, D, K.transperm,
ndrange=(m, 1),
)
wait(ev)
KA.synchronize(CUDABackend())
spgemm!('N', 'N', 1.0, K.Jt, A, 0.0, K.JtJ, 'O')
end

Expand All @@ -47,7 +47,13 @@ function MadNLP.set_aug_diagonal!(kkt::Argos.BieglerKKTSystem{T, VI, VT, MT}, ip
pr_diag_h = kkt.etc[:pr_diag_host]::Vector{T}
# Broadcast is not working as MadNLP array are allocated on the CPU,
# whereas pr_diag is allocated on the GPU
pr_diag_h .= ips.zl./(ips.x.-ips.xl) .+ ips.zu./(ips.xu.-ips.x)
x = MadNLP.full(ips.x)
xl = MadNLP.full(ips.xl)
xu = MadNLP.full(ips.xu)
zl = MadNLP.full(ips.zl)
zu = MadNLP.full(ips.zu)

pr_diag_h .= zl ./ (x .- xl) .+ zu ./ (xu .- x)
copyto!(kkt.pr_diag, pr_diag_h)
fill!(kkt.du_diag, 0.0)
end
Loading

0 comments on commit 2870d90

Please sign in to comment.