Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update ROIsplitter to 0.3.0 #768

Merged
merged 4 commits into from
Jul 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
129 changes: 66 additions & 63 deletions tools/qupath_roi_splitter/qupath_roi_splitter.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,101 +6,104 @@
import pandas as pd


def draw_poly(input_df, input_img, col=(0, 0, 0), fill=False):
s = np.array(input_df)
if fill:
output_img = cv2.fillPoly(input_img, pts=np.int32([s]), color=col)
else:
output_img = cv2.polylines(input_img, np.int32([s]), True, color=col, thickness=1)
return output_img
def collect_coords(input_coords, feature_index, coord_index=0):
coords_with_index = []
for coord in input_coords:
coords_with_index.append((coord[0], coord[1], feature_index, coord_index))
coord_index += 1
return coords_with_index


def draw_roi(input_roi, input_img, fill):
def collect_roi_coords(input_roi, feature_index):
all_coords = []
if len(input_roi["geometry"]["coordinates"]) == 1:
# Polygon w/o holes
input_img = draw_poly(input_roi["geometry"]["coordinates"][0], input_img, fill=fill)
all_coords.extend(collect_coords(input_roi["geometry"]["coordinates"][0], feature_index))
else:
first_roi = True
coord_index = 0
for sub_roi in input_roi["geometry"]["coordinates"]:
# Polygon with holes
# Polygon with holes or MultiPolygon
if not isinstance(sub_roi[0][0], list):
if first_roi:
first_roi = False
col = (0, 0, 0)
else:
# holes in ROI
col = (255, 255, 255) if not fill else (0, 0, 0)
input_img = draw_poly(sub_roi, input_img, col=col, fill=fill)
all_coords.extend(collect_coords(sub_roi, feature_index, coord_index))
coord_index += len(sub_roi)
else:
# MultiPolygon with holes
for sub_coord in sub_roi:
if first_roi:
first_roi = False
col = (0, 0, 0)
else:
# holes in ROI
col = (255, 255, 255) if not fill else (0, 0, 0)
input_img = draw_poly(sub_coord, input_img, col=col, fill=fill)

return input_img
all_coords.extend(collect_coords(sub_coord, feature_index, coord_index))
coord_index += len(sub_coord)
return all_coords


def split_qupath_roi(in_roi):
with open(in_roi) as file:
qupath_roi = geojson.load(file)

# HE dimensions
dim_plt = [qupath_roi["dim"]["width"], qupath_roi["dim"]["height"]]
dim_plt = [int(qupath_roi["dim"]["width"]), int(qupath_roi["dim"]["height"])]

tma_name = qupath_roi["name"]
cell_types = [ct.rsplit(" - ", 1)[-1] for ct in qupath_roi["featureNames"]]

for cell_type in cell_types:
# create numpy array with white background
img = np.zeros((dim_plt[1], dim_plt[0], 3), dtype="uint8")
img.fill(255)

for i, roi in enumerate(qupath_roi["features"]):
if not args.all:
if "classification" not in roi["properties"]:
continue
if roi["properties"]["classification"]["name"] == cell_type:
img = draw_roi(roi, img, args.fill)
else:
img = draw_roi(roi, img, args.fill)
coords_by_cell_type = {ct: [] for ct in cell_types}
coords_by_cell_type['all'] = [] # For storing all coordinates if args.all is True

# get all black pixel
coords_arr = np.column_stack(np.where(img == (0, 0, 0)))
for feature_index, roi in enumerate(qupath_roi["features"]):
feature_coords = collect_roi_coords(roi, feature_index)

# remove duplicated rows
coords_arr_xy = coords_arr[coords_arr[:, 2] == 0]
if args.all:
coords_by_cell_type['all'].extend(feature_coords)
elif "classification" in roi["properties"]:
cell_type = roi["properties"]["classification"]["name"]
if cell_type in cell_types:
coords_by_cell_type[cell_type].extend(feature_coords)

# remove last column
coords_arr_xy = np.delete(coords_arr_xy, 2, axis=1)
for cell_type, coords in coords_by_cell_type.items():
if coords:
# Generate image (white background)
img = np.ones((dim_plt[1], dim_plt[0]), dtype="uint8") * 255

# to pandas and rename columns to x and y
coords_df = pd.DataFrame(coords_arr_xy, columns=['y', 'x'])
# Convert to numpy array and ensure integer coordinates
coords_arr = np.array(coords).astype(int)

# reorder columns
coords_df = coords_df[['x', 'y']]
# Sort by feature_index first, then by coord_index
coords_arr = coords_arr[np.lexsort((coords_arr[:, 3], coords_arr[:, 2]))]

# drop duplicates
coords_df = coords_df.drop_duplicates(
subset=['x', 'y'],
keep='last').reset_index(drop=True)

coords_df.to_csv("{}_{}.txt".format(tma_name, cell_type), sep='\t', index=False)
# Get filled pixel coordinates
if args.fill:
filled_coords = np.column_stack(np.where(img == 0))
all_coords = np.unique(np.vstack((coords_arr[:, :2], filled_coords[:, ::-1])), axis=0)
else:
all_coords = coords_arr[:, :2]

# Save all coordinates to CSV
coords_df = pd.DataFrame(all_coords, columns=['x', 'y'], dtype=int)
coords_df.to_csv("{}_{}.txt".format(tma_name, cell_type), sep='\t', index=False)

# Generate image for visualization if --img is specified
if args.img:
# Group coordinates by feature_index
features = {}
for x, y, feature_index, coord_index in coords_arr:
if feature_index not in features:
features[feature_index] = []
features[feature_index].append((x, y))

# Draw each feature separately
for feature_coords in features.values():
pts = np.array(feature_coords, dtype=np.int32)
if args.fill:
cv2.fillPoly(img, [pts], color=0) # Black fill
else:
cv2.polylines(img, [pts], isClosed=True, color=0, thickness=1) # Black outline

# img save
if args.img:
cv2.imwrite("{}_{}.png".format(tma_name, cell_type), img)
cv2.imwrite("{}_{}.png".format(tma_name, cell_type), img)


if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Split ROI coordinates of QuPath TMA annotation by cell type (classfication)")
parser = argparse.ArgumentParser(description="Split ROI coordinates of QuPath TMA annotation by cell type (classification)")
parser.add_argument("--qupath_roi", default=False, help="Input QuPath annotation (GeoJSON file)")
parser.add_argument("--fill", action="store_true", required=False, help="Fill pixels in ROIs")
parser.add_argument('--version', action='version', version='%(prog)s 0.1.0')
parser.add_argument("--fill", action="store_true", required=False, help="Fill pixels in ROIs (order of coordinates will be lost)")
parser.add_argument('--version', action='version', version='%(prog)s 0.3.0')
parser.add_argument("--all", action="store_true", required=False, help="Extracts all ROIs")
parser.add_argument("--img", action="store_true", required=False, help="Generates image of ROIs")
args = parser.parse_args()
Expand Down
8 changes: 4 additions & 4 deletions tools/qupath_roi_splitter/qupath_roi_splitter.xml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
<tool id="qupath_roi_splitter" name="QuPath ROI Splitter" version="@VERSION@+galaxy@VERSION_SUFFIX@">
<description>Split ROI coordinates of QuPath TMA annotation by cell type (classification)</description>
<macros>
<token name="@VERSION@">0.2.1</token>
<token name="@VERSION@">0.3.0</token>
<token name="@VERSION_SUFFIX@">0</token>
</macros>
<requirements>
Expand Down Expand Up @@ -56,15 +56,15 @@
<assert_contents>
<has_text text="x"/>
<has_text text="y"/>
<has_text text="15561"/>
<has_text text="21160"/>
<has_text text="21153"/>
<has_text text="15570"/>
</assert_contents>
</element>
</output_collection>
<output_collection name="output_imgs" type="list" count="4">
<element name="E-5_Tumor.png">
<assert_contents>
<has_size value="1309478"/>
<has_size value="459919"/>
</assert_contents>
</element>
</output_collection>
Expand Down