- Built on ubuntu 16.04 with CUDA 8.0 and cudnn 6
- Python 3.5.2
- tensorflow and keras (GPU enabled)
- scikit-learn, scikit-image, pandas
- Jupyter Notebook
- pycharm community (2017.3)
- R (most recent)
- sf, raster, velox (including system dependencies)
- tensorflow for R
- RStudio Server (1.1.383)
- git & subversion
Run container in background with GUI support:
nvidia-docker run -td -u coder -p 8787:8787 -p 8888:8888 -p 8008:8008 -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix:ro geo_deeplearn
Option | Descr |
---|---|
-td |
makes sure container runs in background |
-u coder |
login as user 'coder' |
-e and -v |
ensure GUI support (for pycharm) |
-p 8787:8787 |
port forwarding for rstudio |
-p 8888:8888 |
port forwarding for jupyter |
-p 8008:8008 |
port forwarding for tensorboard |
Don't forget to run xhost +
on local machine for GUI support [warning: not safe].
Enter the running container:
docker exec -it [container_id] bash
Start the Rstudio Server
sudo rstudio-server start
Start Jupyter Notebook
jupyter notebook --ip=0.0.0.0 --no-browser
Start pycharm
pycharm