Skip to content

Applied Deep Learning (2022 Fall) HW2 at National Taiwan University (NTU) CSIE

Notifications You must be signed in to change notification settings

ianyang66/ADL2022-HW2

Repository files navigation

Homework 2 - NTU ADL 2022 FALL

Reproduce testing process

Use run.sh to predict testing data

bash download.sh
bash run.sh /path/to/context.json /path/to/test.json /path/to/pred/prediction.csv

example:

bash download.sh
bash run.sh ./data/context.json ./data/test.json ./data/test_submission.csv

Reproduce training process

Install Spacy

You should install spacy and zh_core_web_md, or you can not use my function to compute exact match and f1 score in question answering.

bash spacy&dependency_install.sh

Context-Selection Data Preprocessing

We need to prepare proper data format for multiple-choice and question-answering (store preprocessed data to ./data/cs_train.json, ./data/cs_valid.json, ./data/qa_train.json, ./data/qa_valid.json)

bash preprocess_train.sh /path/to/train.json /path/to/valid.json /path/to/context.json

example:

bash preprocess_train.sh ./data/cs_train.json ./data/cs_valid.json ./data/context.json

Context-Selection train

bash train_cs.sh  /path/to/preprocessed_train.json /path/to/preprocessed_valid.json  /path/to/context.json

example:

bash train_cs.sh ./data/cs_train.json ./data/cs_valid.json ./data/context.json

Question-Answering train

bash train_qa.sh /path/to/preprocessed_train.json /path/to/preprocessed_valid.json  /path/to/context.json

example:

bash train_qa.sh ./data/qa_train.json ./data/qa_valid.json ./data/context.json

Experiment Result

Model Name (CS) Model Name (QA) Gradient Accumulation Steps (MC) Gradient Accumulation Steps (QA) Num Train Epochs (CS) Num Train Epochs (QA) lr scheduler type (CS) lr scheduler type (QA) Public Acc.
on Kaggle
bert-base-chinese bert-base-chinese 2 2 3 1 linear linear 0.74231
hfl/chinese-roberta-wwm-ext hfl/chinese-roberta-wwm-ext 2 2 3 3 linear linear 0.76401
hfl/chinese-roberta-wwm-ext hfl/chinese-roberta-wwm-ext 2 2 3 3 linear cosine 0.783
hfl/chinese-roberta-wwm-ext hfl/chinese-roberta-wwm-ext 2 2 3 20 linear cosine 0.77215
hfl/chinese-roberta-wwm-ext hfl/chinese-roberta-wwm-ext 2 2 3 20 linear linear 0.7613
hfl/chinese-roberta-wwm-ext hfl/chinese-pert-base 2 8 3 10 linear linear 0.76672
hfl/chinese-roberta-wwm-ext hfl/chinese-lert-base 2 8 3 10 linear cosine 0.79023
hfl/chinese-roberta-wwm-ext hfl/chinese-lert-base 2 8 3 10 linear linear 0.79023
hfl/chinese-roberta-wwm-ext hfl/chinese-lert-base 2 8 3 15 linear linear 0.79023
hfl/chinese-roberta-wwm-ext hfl/chinese-lert-base 2 8 3 20 linear linear 0.78119
hfl/chinese-roberta-wwm-ext hfl/chinese-lert-base 2 8 5 10 linear linear 0.78661
hfl/chinese-roberta-wwm-ext hfl/chinese-lert-large 2 8 3 6 linear linear 0.79475
hfl/chinese-roberta-wwm-ext-large hfl/chinese-lert-large 8 8 2 6 linear linear 0.79385
hfl/chinese-macbert-base hfl/chinese-lert-large 8 8 6 6 linear linear 0.79927
hfl/chinese-macbert-large hfl/chinese-lert-large 8 8 2 6 linear linear 0.80831
hfl/chinese-macbert-large hfl/chinese-lert-large 8 64 2 10 linear linear 0.80289

Q5. bonus

Reproduce training&prediction process

Use train_intent.sh to train bert model, and it will also predict the testing data.

bash bonus/train_intent.sh /path/to/data_directory_contain_train.json&eval.json /path/to/test.json /path/to/prediction.csv

example:

bash bonus/train_intent.sh data_hw1/intent data_hw1/intent/test.json intent_pred.csv

Use train_slot.sh to train bert model, and it will also predict the testing data.

bash bonus/train_slot.sh /path/to/data_directory_contain_train.json&eval.json /path/to/test.json /path/to/prediction.csv

example:

bash bonus/train_slot.sh data_hw1/slot data_hw1/slot/test.json slot_pred.csv

About

Applied Deep Learning (2022 Fall) HW2 at National Taiwan University (NTU) CSIE

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published