Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Materialize batch_matmul to batch_mmt4d #14731

Merged
merged 3 commits into from
Aug 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,12 @@ namespace iree_compiler {
namespace IREE {
namespace LinalgExt {

// Check if encoding user is one of matmul encodings.
bool isMatmulEncodingUser(EncodingUser user);

// Check if encoding user is one of batch matmul encodings.
bool isBatchMatmulEncodingUser(EncodingUser user);

struct MatmulTileParams {
int64_t M = 1;
int64_t K = 1;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -248,7 +248,10 @@ lowerOpWithEncoding(RewriterBase &rewriter, linalg::MatmulOp matmulOp,
if (!lhsEncoding || !rhsEncoding || !resultEncoding) {
return failure();
}
if (lhsEncoding.getRole().getValue() !=
if (!isMatmulEncodingUser(lhsEncoding.getUser().getValue()) ||
!isMatmulEncodingUser(rhsEncoding.getUser().getValue()) ||
!isMatmulEncodingUser(resultEncoding.getUser().getValue()) ||
lhsEncoding.getRole().getValue() !=
mlir::iree_compiler::IREE::LinalgExt::EncodingRole::LHS ||
rhsEncoding.getRole().getValue() !=
mlir::iree_compiler::IREE::LinalgExt::EncodingRole::RHS ||
Expand All @@ -262,8 +265,46 @@ lowerOpWithEncoding(RewriterBase &rewriter, linalg::MatmulOp matmulOp,
return mmt4DOp;
}

/// Utility method to convert from `linalg.fill` on `tensor` type with encoding
/// to fill of the materialized type
/// Utility method to convert from `linalg.batch_matmul` with
/// - lhs encoding with user=BATCH_MATMUL_*, role=LHS
/// - rhs encoding with user=BATCH_MATMUL_*, role=RHS
/// - result encoding with user=BATCH_MATMUL_*, role=RESULT
/// to linalg.batch_mmt4d op.
static FailureOr<Operation *>
lowerOpWithEncoding(RewriterBase &rewriter, linalg::BatchMatmulOp batchMatmulOp,
pzread marked this conversation as resolved.
Show resolved Hide resolved
ValueRange convertedInputOperands,
ValueRange convertedOutputOperands, MaterializeEncodingFn,
MaterializeEncodingValueFn) {
if (!batchMatmulOp.hasTensorSemantics())
return failure();
auto inputs = batchMatmulOp.getDpsInputOperands();
auto outputs = batchMatmulOp.getDpsInitOperands();
auto lhsEncoding =
getEncodingAttr(inputs[0]->get().getType().cast<RankedTensorType>());
auto rhsEncoding =
getEncodingAttr(inputs[1]->get().getType().cast<RankedTensorType>());
auto resultEncoding =
getEncodingAttr(outputs[0]->get().getType().cast<RankedTensorType>());
if (!lhsEncoding || !rhsEncoding || !resultEncoding) {
return failure();
}

if (!isBatchMatmulEncodingUser(lhsEncoding.getUser().getValue()) ||
!isBatchMatmulEncodingUser(rhsEncoding.getUser().getValue()) ||
!isBatchMatmulEncodingUser(resultEncoding.getUser().getValue()) ||
lhsEncoding.getRole().getValue() != EncodingRole::LHS ||
rhsEncoding.getRole().getValue() != EncodingRole::RHS ||
resultEncoding.getRole().getValue() != EncodingRole::RESULT) {
return failure();
}
Operation *batchMmt4DOp = rewriter.create<linalg::BatchMmt4DOp>(
batchMatmulOp.getLoc(), convertedOutputOperands[0].getType(),
convertedInputOperands, convertedOutputOperands);
return batchMmt4DOp;
}

/// Utility method to convert from `linalg.fill` on `tensor` type with
/// encoding to fill of the materialized type
static FailureOr<Operation *>
lowerOpWithEncoding(RewriterBase &rewriter, linalg::FillOp fillOp,
ValueRange convertedInputOperands,
Expand Down Expand Up @@ -515,9 +556,11 @@ void populateMaterializeEncodingPatterns(
MaterializeEncodingTypeConverter &typeConverter,
MaterializeEncodingValueFn materializeEncodingValueFn) {

// Add all patterns for converting from encoded type to the materialized type
// Add all patterns for converting from encoded type to the materialized
// type
patterns.insert<MaterializeDPSOperation<linalg::FillOp>,
MaterializeDPSOperation<linalg::MatmulOp>,
MaterializeDPSOperation<linalg::BatchMatmulOp>,
MaterializeOperation<tensor::EmptyOp>,
SetEncodingOpToPackOpConversion,
UnsetEncodingOpToPackOpConversion>(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,23 +11,39 @@ namespace iree_compiler {
namespace IREE {
namespace LinalgExt {

MaterializeEncodingInfo
chooseEncodingInfoForMatmul(EncodingUser user, EncodingRole role,
MatmulTileParams tileParams) {
// Start dim of the MxK (LHS), KxN (RHS), or MxN (RESULT) 2D matrix.
int64_t matmulDimBase = 0;
bool isMatmulEncodingUser(EncodingUser user) {
switch (user) {
case EncodingUser::MATMUL_F32F32F32:
case EncodingUser::MATMUL_F16F16F32:
case EncodingUser::MATMUL_F16F16F16:
case EncodingUser::MATMUL_BF16BF16F32:
case EncodingUser::MATMUL_BF16BF16BF16:
case EncodingUser::MATMUL_I8I8I32:
return true;
default:
return false;
}
}

bool isBatchMatmulEncodingUser(EncodingUser user) {
switch (user) {
case EncodingUser::BATCH_MATMUL_F32F32F32:
case EncodingUser::BATCH_MATMUL_F16F16F32:
case EncodingUser::BATCH_MATMUL_F16F16F16:
case EncodingUser::BATCH_MATMUL_BF16BF16F32:
case EncodingUser::BATCH_MATMUL_BF16BF16BF16:
case EncodingUser::BATCH_MATMUL_I8I8I32:
matmulDimBase = 1;
break;
return true;
default:
break;
return false;
}
}

MaterializeEncodingInfo
chooseEncodingInfoForMatmul(EncodingUser user, EncodingRole role,
MatmulTileParams tileParams) {
// Start dim of the MxK (LHS), KxN (RHS), or MxN (RESULT) 2D matrix.
int64_t matmulDimBase = isBatchMatmulEncodingUser(user) ? 1 : 0;

MaterializeEncodingInfo encodingInfo;
encodingInfo.innerDimsPos = {matmulDimBase, matmulDimBase + 1};
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -240,3 +240,101 @@ func.func @pack_unpack_batch_matmul_result(%arg0 : tensor<?x?x?xf32>) -> tensor<
// CHECK: %[[UNPACK_DEST:.+]] = tensor.empty(%[[D0]], %[[D1]], %[[D2]]) : tensor<?x?x?xf32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[PACK]] inner_dims_pos = [1, 2] inner_tiles = [8, 8] into %[[UNPACK_DEST]]
// CHECK: return %[[UNPACK]]

// -----

func.func @pack_batch_matmul(%arg0 : tensor<128x80x32xf32>, %arg1 : tensor<128x32x320xf32>, %arg2 : tensor<128x80x320xf32>) -> tensor<128x80x320xf32> {
%0 = iree_linalg_ext.set_encoding %arg0 : tensor<128x80x32xf32> -> tensor<128x80x32xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = LHS>>
%1 = iree_linalg_ext.set_encoding %arg1 : tensor<128x32x320xf32> -> tensor<128x32x320xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RHS>>
%2 = iree_linalg_ext.set_encoding %arg2 : tensor<128x80x320xf32> -> tensor<128x80x320xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>
%3 = linalg.batch_matmul ins(%0, %1 : tensor<128x80x32xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = LHS>>, tensor<128x32x320xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RHS>>)
outs(%2 : tensor<128x80x320xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>) -> tensor<128x80x320xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>
%4 = iree_linalg_ext.unset_encoding %3 : tensor<128x80x320xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>> -> tensor<128x80x320xf32>
return %4 : tensor<128x80x320xf32>
}
// CHECK: func @pack_batch_matmul(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<128x80x32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<128x32x320xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<128x80x320xf32>
// CHECK: %[[PACK_LHS:.+]] = tensor.pack
// CHECK-SAME: %[[ARG0]]
// CHECK: %[[PACK_RHS:.+]] = tensor.pack
// CHECK-SAME: %[[ARG1]]
// CHECK: %[[PACK_RESULT:.+]] = tensor.pack
// CHECK-SAME: %[[ARG2]]
// CHECK: %[[BATCH_MMT4D:.+]] = linalg.batch_mmt4d
// CHECK-SAME: ins(%[[PACK_LHS]], %[[PACK_RHS]] :
// CHECK-SAME: outs(%[[PACK_RESULT]] :
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[BATCH_MMT4D]]
// CHECK: return %[[UNPACK]]

// -----

func.func @pack_batch_matmul_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>, %arg2 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
%0 = iree_linalg_ext.set_encoding %arg0 : tensor<?x?x?xf32> -> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = LHS>>
%1 = iree_linalg_ext.set_encoding %arg1 : tensor<?x?x?xf32> -> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RHS>>
%2 = iree_linalg_ext.set_encoding %arg2 : tensor<?x?x?xf32> -> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>
%3 = linalg.batch_matmul ins(%0, %1 : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = LHS>>, tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RHS>>)
outs(%2 : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>) -> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>
%4 = iree_linalg_ext.unset_encoding %3 : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>> -> tensor<?x?x?xf32>
return %4 : tensor<?x?x?xf32>
}
// CHECK: func @pack_batch_matmul_dynamic(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?x?xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<?x?x?xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<?x?x?xf32>
// CHECK: %[[PACK_LHS:.+]] = tensor.pack
// CHECK-SAME: %[[ARG0]]
// CHECK: %[[PACK_RHS:.+]] = tensor.pack
// CHECK-SAME: %[[ARG1]]
// CHECK: %[[PACK_RESULT:.+]] = tensor.pack
// CHECK-SAME: %[[ARG2]]
// CHECK: %[[BATCH_MMT4D:.+]] = linalg.batch_mmt4d
// CHECK-SAME: ins(%[[PACK_LHS]], %[[PACK_RHS]] :
// CHECK-SAME: outs(%[[PACK_RESULT]] :
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[BATCH_MMT4D]]
// CHECK: return %[[UNPACK]]

// -----

func.func @pack_batch_matmul_fill_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%cst = arith.constant 0.0 : f32
%d0 = tensor.dim %arg0, %c0 : tensor<?x?x?xf32>
%d1 = tensor.dim %arg0, %c1 : tensor<?x?x?xf32>
%d2 = tensor.dim %arg1, %c2 : tensor<?x?x?xf32>
%0 = iree_linalg_ext.set_encoding %arg0 : tensor<?x?x?xf32> -> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = LHS>>
%1 = iree_linalg_ext.set_encoding %arg1 : tensor<?x?x?xf32> -> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RHS>>
%2 = tensor.empty(%d0, %d1, %d2) : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>
%3 = linalg.fill ins(%cst : f32) outs(%2 : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>)
-> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>
%4 = linalg.batch_matmul ins(%0, %1 : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = LHS>>, tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RHS>>)
outs(%3 : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>) -> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>
%5 = iree_linalg_ext.unset_encoding %4 : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>> -> tensor<?x?x?xf32>
return %5 : tensor<?x?x?xf32>
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<()[s0] -> (s0 ceildiv 8)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<()[s0] -> (s0 ceildiv 4)>
// CHECK: func @pack_batch_matmul_fill_dynamic(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?x?xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<?x?x?xf32>
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
// CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index
// CHECK-DAG: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK-DAG: %[[D1:.+]] = tensor.dim %[[ARG0]], %[[C1]]
// CHECK-DAG: %[[D2:.+]] = tensor.dim %[[ARG1]], %[[C2]]
// CHECK-DAG: %[[OUT_D1:.+]] = affine.apply #[[MAP0]]()[%[[D1]]]
// CHECK-DAG: %[[OUT_D2:.+]] = affine.apply #[[MAP0]]()[%[[D2]]]
// CHECK-DAG: %[[PACK_LHS:.+]] = tensor.pack %[[ARG0]]
// CHECK-DAG: %[[PACK_RHS:.+]] = tensor.pack %[[ARG1]]
// CHECK-DAG: %[[EMPTY:.+]] = tensor.empty(%[[D0]], %[[OUT_D1]], %[[OUT_D2]]) : tensor<?x?x?x8x8xf32>
// CHECK: %[[FILL:.+]] = linalg.fill
// CHECK-SAME: outs(%[[EMPTY]] : tensor<?x?x?x8x8xf32>)
// CHECK: %[[BATCH_MMT4D:.+]] = linalg.batch_mmt4d
// CHECK-SAME: ins(%[[PACK_LHS]], %[[PACK_RHS]] :
// CHECK-SAME: outs(%[[FILL]] :
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[BATCH_MMT4D]]
// CHECK: return %[[UNPACK]]
Loading