-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Move script from IMP.nestor.nestor to IMP.nestor
- Loading branch information
Showing
3 changed files
with
346 additions
and
347 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,344 @@ | ||
# do nothing | ||
from __future__ import print_function, division | ||
import os | ||
import glob | ||
import time | ||
import math | ||
import yaml | ||
import pickle | ||
from mpi4py import MPI | ||
|
||
|
||
class NestedSampling: | ||
def __init__(self, h_param_file, nestor_restraints, rex_macro, exit_code): | ||
with open(h_param_file, "r") as paramf: | ||
self.h_params = yaml.safe_load(paramf) | ||
|
||
self.tic = -9999.0 | ||
self.toc = None | ||
self.mcmc_step_time = None | ||
self.num_init_frames = self.h_params["num_init_frames"] | ||
self.num_frames_per_iter = self.h_params["num_frames_per_iter"] | ||
self.nestor_niter = self.h_params["max_nestor_iter"] | ||
self.rex_macro = rex_macro | ||
|
||
for restraint in nestor_restraints: | ||
if restraint.weight != 0: | ||
raise ValueError( | ||
"Weight of all restraints in nestor_restraints " | ||
"must be set to 0" | ||
) | ||
|
||
self.rex_macro.nestor_restraints = nestor_restraints | ||
self.rex_macro.nest = True | ||
|
||
self.max_plateau_hits = self.h_params["max_plateau_hits"] | ||
self.plateau_hits = 0 | ||
self.max_failed_iter = self.h_params["max_failed_iterations"] | ||
self.failed_iter = 0 | ||
|
||
self.Xi = 1 | ||
self.Z = 0 | ||
self.H = 0 | ||
|
||
self.worst_li_list = [] | ||
self.worst_xi_list = [] | ||
self.log_worst_li = [] | ||
self.log_xi = [] | ||
self.xi = [] | ||
|
||
self.comm_obj = MPI.COMM_WORLD | ||
self.finished = False | ||
self.termination_mode = "None" | ||
self.exit_code = exit_code | ||
self.return_vals = {} | ||
|
||
def sample_initial_frames(self): | ||
self.rex_macro.vars["number_of_frames"] = self.num_init_frames | ||
start_time = time.time() | ||
self.rex_macro.execute_macro() | ||
end_time = time.time() | ||
per_frame_sampling_time = ((end_time - start_time) | ||
/ self.num_init_frames) | ||
self.mcmc_step_time = ( | ||
per_frame_sampling_time / self.rex_macro.vars["monte_carlo_steps"] | ||
) | ||
|
||
def parse_likelihoods(self, iteration, fhead="likelihoods_"): | ||
sampled_likelihoods = [] | ||
all_likelihood_binaries = glob.glob(f"{fhead}*") | ||
|
||
for binfile in all_likelihood_binaries: | ||
likelihoods = [] | ||
with open(binfile, "rb") as rlif: | ||
likelihoods = pickle.load(rlif) | ||
for li in likelihoods: | ||
sampled_likelihoods.append(li) | ||
os.remove(binfile) | ||
|
||
is_nan = False | ||
for li in sampled_likelihoods: | ||
if math.isnan(li): | ||
is_nan = True | ||
if is_nan: | ||
self.termination_mode = "Error: Nan found" | ||
self.exit_code = 11 | ||
print("NaN found. Terminating...") | ||
for li in sampled_likelihoods: | ||
print(li) | ||
self.terminator( | ||
iteration=iteration, | ||
plateau_hits=self.plateau_hits, | ||
failed_iter=self.failed_iter, | ||
) | ||
|
||
return sampled_likelihoods | ||
|
||
def check_plateau(self): | ||
""" | ||
Check if Li/Xi is plateuing for consecutive samples, stop | ||
""" | ||
|
||
previous_Li = self.worst_li_list[-2] | ||
current_Li = self.worst_li_list[-1] | ||
previous_Xi = self.worst_xi_list[-2] | ||
current_Xi = self.worst_xi_list[-1] | ||
|
||
if (current_Li / previous_Li) < (previous_Xi / current_Xi): | ||
self.plateau_hits += 1 | ||
print( | ||
f"{'---'*20}\nPlateau detector hits: " | ||
f"{self.plateau_hits}/{self.max_plateau_hits}" | ||
) | ||
else: | ||
self.plateau_hits = 0 | ||
|
||
if self.plateau_hits == self.max_plateau_hits: | ||
self.termination_mode = "MaxPlateauHits" | ||
self.finished = True | ||
|
||
def terminator(self, iteration, plateau_hits, failed_iter): | ||
from math import log | ||
|
||
self.toc = time.time() | ||
|
||
if "error" not in self.termination_mode.lower(): | ||
print(f"Estimated evidence sampled: {self.Z}") | ||
self.exit_code = 0 | ||
try: | ||
ana_unc = math.sqrt(self.H / self.num_init_frames) | ||
except ValueError: | ||
ana_unc = "Did not compute. H was negative" | ||
print("Math domain error") | ||
self.exit_code = 13 | ||
|
||
from matplotlib import pyplot as plt | ||
|
||
fig, ax = plt.subplots(1) | ||
ax.set_xlabel("log(Xi)") | ||
ax.set_ylabel("log(Li)") | ||
ax.clear() | ||
ax.plot(self.log_xi, self.log_worst_li) | ||
fig.savefig("log_lixi.png") | ||
plt.close() | ||
|
||
fig, ax = plt.subplots(1) | ||
ax.plot(self.xi, self.log_worst_li) | ||
ax.set_xlabel("Xi") | ||
ax.set_ylabel("log(Li)") | ||
fig.savefig("lixi.png") | ||
plt.close() | ||
|
||
self.return_vals["last_iter"] = iteration | ||
self.return_vals["plateau_hits"] = plateau_hits | ||
self.return_vals["failed_iter"] = failed_iter | ||
self.return_vals["obtained_information"] = self.H | ||
self.return_vals["analytical_uncertainty"] = ana_unc | ||
self.return_vals["nestor_process_time"] = self.toc - self.tic | ||
self.return_vals["mcmc_step_time"] = self.mcmc_step_time | ||
self.return_vals["log_estimated_evidence"] = log(self.Z) | ||
|
||
else: | ||
self.return_vals["run_params"] = self.h_params | ||
|
||
self.return_vals["termination_mode"] = self.termination_mode | ||
self.return_vals["exit_code"] = self.exit_code | ||
|
||
def compute_evidence_H(self, iteration, curr_li): | ||
# compute Z | ||
curr_xi = math.exp(-iteration / self.num_init_frames) | ||
curr_wi = self.Xi - curr_xi | ||
prev_zi = self.Z | ||
self.Z += curr_li * curr_wi | ||
curr_zi = self.Z | ||
self.Xi = curr_xi | ||
|
||
# compute H | ||
if iteration > 1: | ||
first_term = ((curr_li * curr_wi) / curr_zi) * math.log(curr_li) | ||
second_term = (prev_zi / curr_zi) * (self.H + math.log(prev_zi)) | ||
self.H = first_term + second_term - math.log(curr_zi) | ||
|
||
def execute_nested_sampling2(self): | ||
self.tic = time.time() | ||
import matplotlib.pyplot as plt | ||
|
||
i = 0 | ||
true_iter = 0 | ||
base_process = self.comm_obj.Get_rank() == 0 | ||
self.comm_obj.Barrier() | ||
|
||
if "shuffle_config.err" in os.listdir("./"): | ||
self.exit_code = 11 | ||
|
||
self.comm_obj.Barrier() | ||
|
||
print( | ||
f"Exit code from the macros after communication: {self.exit_code} " | ||
f"at rank: {self.comm_obj.Get_rank()}" | ||
) | ||
|
||
if self.exit_code is None: | ||
# Check for nan through small test run | ||
self.comm_obj.Barrier() | ||
if base_process: | ||
print( | ||
f"{'-'*50}\nTest run complete, no NaN found. " | ||
f"Continuing...\n{'-'*50}\n\n" | ||
) | ||
self.comm_obj.Barrier() | ||
|
||
self.sample_initial_frames() | ||
self.comm_obj.Barrier() | ||
|
||
if base_process: | ||
self.likelihoods = self.parse_likelihoods(iteration=true_iter) | ||
self.comm_obj.Barrier() | ||
|
||
self.rex_macro.vars["number_of_frames"] = self.num_frames_per_iter | ||
self.rex_macro.vars["replica_exchange_swap"] = True | ||
|
||
while true_iter < self.nestor_niter: | ||
self.comm_obj.Barrier() | ||
self.finished = self.comm_obj.bcast(self.finished, root=0) | ||
self.exit_code = self.comm_obj.bcast(self.exit_code, root=0) | ||
|
||
if self.exit_code is not None: | ||
# run log will exist if | ||
# a. parse_likelihoods had a nan error in the test iter, | ||
# called terminator. | ||
# b. convergence criterion plateau reached, called | ||
# terminator. | ||
# c. convergence criterion max_failed_iterations reached, | ||
# called terminator. | ||
break | ||
|
||
if not self.finished: | ||
# Other processes should not sample more models as | ||
# convergence criteria i.e. a. max_failed_iterations | ||
# or b. plateau triggered and the likelihoods list is | ||
# unraveled to accumulate Z/H. | ||
self.rex_macro.execute_macro() | ||
self.comm_obj.Barrier() | ||
|
||
if base_process: | ||
if len(self.likelihoods) != 0: | ||
Li = min(self.likelihoods) | ||
if not self.finished: | ||
newly_sampled_likelihoods = self.parse_likelihoods( | ||
iteration=true_iter | ||
) | ||
candidate_li = max(newly_sampled_likelihoods) | ||
else: # unraveling | ||
candidate_li = Li | ||
|
||
if candidate_li >= Li: | ||
self.likelihoods.remove(Li) | ||
|
||
if not self.finished: | ||
self.likelihoods.append(candidate_li) | ||
|
||
# print(self.likelihoods, "\n", Li) | ||
self.compute_evidence_H(iteration=i, curr_li=Li) | ||
self.log_worst_li.append(math.log(Li)) | ||
|
||
self.log_xi.append(math.log(self.Xi)) | ||
self.xi.append(self.Xi) | ||
self.worst_li_list.append(Li) | ||
self.worst_xi_list.append(self.Xi) | ||
|
||
if not self.finished: | ||
if i > 1: | ||
self.check_plateau() | ||
self.failed_iter = 0 | ||
i += 1 | ||
|
||
else: | ||
self.failed_iter += 1 | ||
if self.failed_iter == self.max_failed_iter: | ||
self.termination_mode = "MaxFailedIterations" | ||
self.finished = True | ||
|
||
true_iter += 1 | ||
print( | ||
f'\n-----> True iteration: {true_iter} {" "*5} ' | ||
f'Calculation iteration: {i} {" "*5} ' | ||
f'Failed iteration: {self.failed_iter} {" "*5} ' | ||
f'Evidence: {self.Z} {" "*5} ' | ||
f'Terminating: {self.finished}\n' | ||
) | ||
if true_iter % 10 == 0: | ||
from math import log | ||
|
||
tempout = { | ||
"True iteration": true_iter, | ||
"Calculation iteration": i, | ||
"Failed iteration": self.failed_iter, | ||
"Log Evidence": log(self.Z), | ||
"Plateau hits": self.plateau_hits, | ||
} | ||
with open("temporary_output.yaml", "w") as tof: | ||
yaml.dump(tempout, tof) | ||
|
||
else: | ||
self.terminator( | ||
iteration=true_iter, | ||
plateau_hits=self.plateau_hits, | ||
failed_iter=self.failed_iter, | ||
) | ||
|
||
live_fig, live_ax = plt.subplots(1) | ||
live_ax.set_xlabel("log(Xi)") | ||
live_ax.set_ylabel("log(Li)") | ||
live_ax.plot(self.log_xi, self.log_worst_li) | ||
live_fig.savefig("live_loglixi.png") | ||
plt.close() | ||
|
||
self.comm_obj.Barrier() | ||
true_iter = self.comm_obj.bcast(true_iter, root=0) | ||
if true_iter == self.nestor_niter: | ||
self.termination_mode = ( | ||
"Error: MaxIterations reached without convergence " | ||
"criteria") | ||
self.exit_code = 12 | ||
self.exit_code = self.comm_obj.bcast(self.exit_code, | ||
root=0) | ||
self.terminator( | ||
iteration=true_iter, | ||
plateau_hits=self.plateau_hits, | ||
failed_iter=self.failed_iter, | ||
) | ||
|
||
else: | ||
if base_process: | ||
self.termination_mode = "Error: Shuffle configuration error" | ||
self.exit_code = 11 | ||
self.exit_code = self.comm_obj.bcast(self.exit_code, root=0) | ||
self.terminator(iteration=0, plateau_hits=0, failed_iter=0) | ||
self.comm_obj.Barrier() | ||
|
||
self.exit_code = self.comm_obj.bcast(self.exit_code, root=0) | ||
|
||
if base_process: | ||
return self.return_vals, self.exit_code | ||
else: | ||
return None, None |
Oops, something went wrong.