-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #96 from jiangyi15/angle_3d
feat: add examples for plot_3d_angle
- Loading branch information
Showing
2 changed files
with
182 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
""" | ||
Draw 3d plot of helicity angle with a chain boost. | ||
The results can be seen in | ||
https://agenda.infn.it/event/33110/contributions/198135/attachments/106337/149769/hadron2023_v5.pdf | ||
Page 14. | ||
The script requied mayavi for the 3d plot. | ||
""" | ||
|
||
import numpy as np | ||
from mayavi import mlab | ||
|
||
from tf_pwa.config_loader import ConfigLoader | ||
from tf_pwa.data import data_index | ||
|
||
config = ConfigLoader("config.yml") | ||
data = config.get_data("data")[0] | ||
index_of_data = 0 # the first data point | ||
|
||
|
||
def draw_line(a, b, split=1): | ||
delta = b - a | ||
n = 2 * split - 1 | ||
for i in range(n): | ||
if i % 2 == 1: | ||
continue | ||
mlab.plot3d( | ||
[ | ||
a[0] + (i / (2 * split - 1)) * delta[0], | ||
a[0] + ((i + 1) / (2 * split - 1)) * delta[0], | ||
], | ||
[ | ||
a[1] + (i / (2 * split - 1)) * delta[1], | ||
a[1] + ((i + 1) / (2 * split - 1)) * delta[1], | ||
], | ||
[ | ||
a[2] + (i / (2 * split - 1)) * delta[2], | ||
a[2] + ((i + 1) / (2 * split - 1)) * delta[2], | ||
], | ||
) | ||
|
||
|
||
def draw_arc(o, z1, r, z2, diff=0, name=None): | ||
sinphi = np.dot(np.cross(z1, z2), r) / np.sqrt(np.sum(r**2)) | ||
cosphi = np.dot(z1, z2) | ||
phi_all = np.arctan2(sinphi, cosphi) | ||
# print(phi_all) | ||
phi = np.linspace(0, phi_all, 64) + diff | ||
vx = z1 | ||
v2 = np.cross(r, z1) | ||
v2 = v2 / np.sqrt(np.sum(v2**2)) * np.sqrt(np.sum(z2**2)) | ||
x = o + z1 * np.cos(phi)[:, None] + v2 * np.sin(phi)[:, None] | ||
mlab.plot3d(x[:, 0], x[:, 1], x[:, 2], name=name) | ||
|
||
|
||
def draw_plane(idx, x0, vz, vx, angle): | ||
""" | ||
x - y x - z | ||
\ phi theta | ||
\ | / | ||
--------- |/ | ||
\ / | ||
\ /| | ||
/ | | ||
""" | ||
|
||
rz = np.cos(angle["beta"]) | ||
rx = np.sin(angle["beta"]) * np.cos(angle["alpha"]) | ||
ry = np.sin(angle["beta"]) * np.sin(angle["alpha"]) | ||
# print(angle["alpha"]) | ||
|
||
vy = np.cross(vz, vx) | ||
vx = np.cross(vy, vz) | ||
|
||
vz = vz / np.sqrt(np.sum(vz**2)) | ||
vx = vx / np.sqrt(np.sum(vx**2)) | ||
vy = vy / np.sqrt(np.sum(vy**2)) | ||
|
||
arrow = vz * rz + vx * rx + vy * ry | ||
arrow = arrow / np.sqrt(np.sum(arrow**2)) | ||
# print(arrow, vx, vz, vy) | ||
|
||
center = x0 + vz | ||
left = vx * rx + vy * ry | ||
p1 = x0 - left | ||
p2 = x0 + left | ||
p3 = x0 + 2 * vz - left | ||
p4 = x0 + 2 * vz + left | ||
|
||
# mlab.points3d([center[0]], [center[1]], [center[2]]) | ||
|
||
rz_v = np.cos(np.linspace(0, 2 * np.pi, 64)) | ||
rx_v = np.sin(np.linspace(0, 2 * np.pi, 64)) * np.cos(angle["alpha"]) | ||
ry_v = np.sin(np.linspace(0, 2 * np.pi, 64)) * np.sin(angle["alpha"]) | ||
|
||
p = center + rz_v[:, None] * vz + ry_v[:, None] * vy + rx_v[:, None] * vx | ||
p2 = center + np.zeros_like(p) | ||
# print(p, p2) | ||
# mlab.points3d([center[0]], [center[1]], [center[2]], [0.3]) | ||
draw_line(x0, center) | ||
draw_line(center, center + vz, 5) | ||
draw_line(center - arrow, center + arrow) | ||
draw_arc( | ||
center, | ||
0.5 * vz, | ||
0.5 * np.cross(vz, arrow), | ||
0.5 * arrow, | ||
name=f"theta{idx}", | ||
) | ||
new_vy = np.cross(vz, arrow) | ||
draw_arc( | ||
x0, | ||
0.5 * vy, | ||
vz, | ||
0.5 * new_vy / np.sqrt(np.sum(new_vy**2)), | ||
diff=-np.pi / 2, | ||
name=f"phi{idx}", | ||
) | ||
|
||
mlab.mesh([p[:, 0], p2[:, 0]], [p[:, 1], p2[:, 1]], [p[:, 2], p2[:, 2]]) | ||
# print(([[p1[0], p2[0]],[p3[0],p4[0]]], [[p1[1], p2[1]],[ p3[1], p4[1]]], [[p1[2],p2[2]], [p3[2], p4[2]]])) | ||
# mlab.mesh([[p1[0], p2[0]],[p3[0],p4[0]]], [[p1[1], p2[1]],[ p3[1], p4[1]]], [[p1[2],p2[2]], [p3[2], p4[2]]]) | ||
return center, arrow, np.cross(np.cross(vz, arrow), arrow) | ||
|
||
|
||
decay_chain = config.get_decay(False)[1] | ||
# print(decay_chain) | ||
start_point = {decay_chain.top: np.array((0, 0, 0))} | ||
start_arrow = {decay_chain.top: np.array((0, 0, 1))} | ||
start_arrow2 = {decay_chain.top: np.array((1, 0, 0))} | ||
|
||
plot_decay_chains = [ | ||
config.get_decay(False)[0] | ||
] # , config.get_decay(False)[1], config.get_decay(False)[2]] | ||
|
||
mlab.figure() | ||
for decay_chain in plot_decay_chains: | ||
print(decay_chain) | ||
for idx, (level, decay) in enumerate(decay_chain.depth_first()): | ||
x0 = start_point[decay.core] | ||
vz = start_arrow[decay.core] | ||
vx = start_arrow2[decay.core] | ||
# load angle | ||
angle = data_index( | ||
data, | ||
config.get_data_index( | ||
"angle", | ||
"/".join(str(i.core) for i in decay_chain) | ||
+ "/" | ||
+ str(decay.outs[0]), | ||
), | ||
) | ||
angle = {k: v[index_of_data] for k, v in angle.items()} | ||
|
||
# draw plane | ||
center, arrow, new_vx = draw_plane(idx, x0, vz, vx, angle) | ||
start_point[decay.outs[0]] = center + arrow | ||
start_point[decay.outs[1]] = center - arrow | ||
start_arrow[decay.outs[0]] = arrow | ||
start_arrow[decay.outs[1]] = -arrow | ||
start_arrow2[decay.outs[0]] = new_vx | ||
start_arrow2[decay.outs[1]] = -new_vx | ||
|
||
# mlab.points3d([0], [0], [0],scale_factor=0.2) | ||
# mlab.outline() | ||
mlab.show() |