Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MLP model #147

Merged
merged 2 commits into from
Jun 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 26 additions & 0 deletions checks/fit_shape/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# Script to directly fit the shape with MLP

# input:

- config.yml: target

- init_params.json: parameters for target model

- config_mi.yml: fit model

# fit script

- fit_shape.py

# output:

- fit_results.png: plot of real and image

- final_params.json: results of fit parameters

# example

- final*params*\*.json: one possible fit results with activation name in the
tail.

The best model have loss about 31.85.
22 changes: 22 additions & 0 deletions checks/fit_shape/config.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
data:
dat_order: [B, C, D]

decay:
A: [BC, D]
BC: [B, C]

particle:
$top: A
$finals: [B, C, D]
A: { J: 0, P: -1, mass: 3.0 }
B: { J: 0, P: -1, mass: 0.1 }
C: { J: 0, P: -1, mass: 0.1 }
D: { J: 0, P: -1, mass: 0.1 }
BC: [BC1, BC2]
BC1: { J: 0, P: +1, mass: 1.0, width: 0.5 }
BC2: { J: 0, P: +1, mass: 2.0, width: 0.5 }

constrains:
decay:
fix_chain_idx: 0
fix_chain_val: 1
27 changes: 27 additions & 0 deletions checks/fit_shape/config_mi.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
data:
dat_order: [B, C, D]

decay:
A: [BC, D]
BC: [B, C]

particle:
$top: A
$finals: [B, C, D]
A: { J: 0, P: -1, mass: 3.0 }
B: { J: 0, P: -1, mass: 0.1 }
C: { J: 0, P: -1, mass: 0.1 }
D: { J: 0, P: -1, mass: 0.1 }
BC: [MI]
MI:
J: 0
P: +1
mass: 1.0
interp_N: 10
model: MLP
activation: leaky_relu

constrains:
decay:
fix_chain_idx: 0
fix_chain_val: 1
38 changes: 38 additions & 0 deletions checks/fit_shape/final_params_leaky_relu.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
{
"MI_b_0": -0.8796771549166532,
"MI_b_1": -0.5555867175456078,
"MI_b_2": 0.25869784992909006,
"MI_b_3": -1.0627308851937134,
"MI_b_4": 3.6615951678704897,
"MI_b_5": -0.07954771940190528,
"MI_b_6": -0.256124862341781,
"MI_b_7": 14.23127083846775,
"MI_b_8": -1.286108632752361,
"MI_b_9": 0.07076624632726991,
"MI_w_0r": -5.104381116132341,
"MI_w_0i": 7.871238527765366,
"MI_w_1r": 3.23365301131465,
"MI_w_1i": 2.5985262831448064,
"MI_w_2r": -5.405269642657437,
"MI_w_2i": 5.314416098804127,
"MI_w_3r": 6.633822670781981,
"MI_w_3i": 6.899102757998181,
"MI_w_4r": -2.241794106880599,
"MI_w_4i": 4.787308576161889,
"MI_w_5r": 11.011051058950653,
"MI_w_5i": -0.7205598197812919,
"MI_w_6r": 7.060488845223941,
"MI_w_6i": 7.225803210685805,
"MI_w_7r": 0.4388703291081927,
"MI_w_7i": -1.2006659389428078,
"MI_w_8r": 3.8879823702434892,
"MI_w_8i": 2.574115900343803,
"MI_w_9r": 10.533495767231539,
"MI_w_9i": -2.4450624359388207,
"A->MI.DMI->B.C_total_0r": 1.0,
"A->MI.DMI->B.C_total_0i": 0.0,
"A->MI.D_g_ls_0r": 1.0,
"A->MI.D_g_ls_0i": 0.0,
"MI->B.C_g_ls_0r": 1.0,
"MI->B.C_g_ls_0i": 0.0
}
38 changes: 38 additions & 0 deletions checks/fit_shape/final_params_relu.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
{
"MI_b_0": -1.0622250950337662,
"MI_b_1": -0.8789283255768763,
"MI_b_2": 3.0599096017088203,
"MI_b_3": -1.285576319474175,
"MI_b_4": -0.255100410428076,
"MI_b_5": -0.5535368004801267,
"MI_b_6": 7.558983658698586,
"MI_b_7": 0.07110322552772569,
"MI_b_8": 0.2590192741152075,
"MI_b_9": -0.07886432386304608,
"MI_w_0r": 5.3129601453575965,
"MI_w_0i": 6.89330400075596,
"MI_w_1r": 4.076189414869148,
"MI_w_1i": 4.72169072366533,
"MI_w_2r": 2.2345575394656794,
"MI_w_2i": 1.5674140496474243,
"MI_w_3r": 3.1181489763446524,
"MI_w_3i": 2.5713070284633615,
"MI_w_4r": 5.664131964810804,
"MI_w_4i": 7.217921257894127,
"MI_w_5r": -2.5927805257104555,
"MI_w_5i": 5.731281787333332,
"MI_w_6r": 0.6947219631515521,
"MI_w_6i": -1.3812766994545103,
"MI_w_7r": -8.411867876040107,
"MI_w_7i": 6.974832219369253,
"MI_w_8r": 4.313161954304356,
"MI_w_8i": 2.171071429023437,
"MI_w_9r": 8.808426082864889,
"MI_w_9i": 5.556405458272451,
"A->MI.DMI->B.C_total_0r": 1.0,
"A->MI.DMI->B.C_total_0i": 0.0,
"A->MI.D_g_ls_0r": 1.0,
"A->MI.D_g_ls_0i": 0.0,
"MI->B.C_g_ls_0r": 1.0,
"MI->B.C_g_ls_0i": 0.0
}
69 changes: 69 additions & 0 deletions checks/fit_shape/fit_shape.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

from tf_pwa.config_loader import ConfigLoader
from tf_pwa.utils import time_print

config = ConfigLoader("config.yml")

config.set_params("init_params.json")

config_mi = ConfigLoader("config_mi.yml")
config_mi.get_params()

# config_mi.set_params("final_params.json")

config_mi.vm.set_fix("MI_w_0r", unfix=True)
config_mi.vm.set_fix("MI_w_0i", unfix=True)


f1 = config.get_particle_function("BC1")
f2 = config.get_particle_function("BC2")

f = config_mi.get_particle_function("MI")

m = f.mass_linspace(10000)


fast_f = f.cached_call(m)
target_f = f1(m) + f2(m)


plot_count = 1


def f_loss():
ret = tf.reduce_sum(tf.abs(fast_f() - target_f) ** 2)
global plot_count
if plot_count % 10 == 1:
print(ret)
plot_count += 1
return ret


best_params = {}
best_loss = np.inf
best_fit_result = None
for i in range(1):
fit_result = time_print(config_mi.vm.minimize)(f_loss)
if fit_result.fun < best_loss:
best_loss = fit_result.fun
best_params = config_mi.get_params()
best_fit_result = fit_result
# reset random parameters
config_mi2 = ConfigLoader("config_mi.yml")
config_mi.set_params(config_mi2.get_params())

config_mi.set_params(best_params)
config_mi.save_params("final_params.json")

print(best_fit_result)

plt.plot(m, tf.math.imag(f(m)).numpy(), label="image fit")
plt.plot(m, tf.math.imag(f1(m) + f2(m)).numpy(), label="imag target")
plt.plot(m, tf.math.real(f(m)).numpy(), label="real fit")
plt.plot(m, tf.math.real(f1(m) + f2(m)).numpy(), label="real target")

plt.legend()
plt.savefig("fit_results.png")
18 changes: 18 additions & 0 deletions checks/fit_shape/init_params.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
{
"BC1_mass": 1.0,
"BC1_width": 0.5,
"BC2_mass": 2.0,
"BC2_width": 0.5,
"A->BC1.DBC1->B.C_total_0r": 1.0,
"A->BC1.DBC1->B.C_total_0i": 0.0,
"A->BC1.D_g_ls_0r": 1.0,
"A->BC1.D_g_ls_0i": 0.0,
"BC1->B.C_g_ls_0r": 1.0,
"BC1->B.C_g_ls_0i": 0.0,
"A->BC2.DBC2->B.C_total_0r": 1.0,
"A->BC2.DBC2->B.C_total_0i": 1.5,
"A->BC2.D_g_ls_0r": 1.0,
"A->BC2.D_g_ls_0i": 0.0,
"BC2->B.C_g_ls_0r": 1.0,
"BC2->B.C_g_ls_0i": 0.0
}
48 changes: 48 additions & 0 deletions tf_pwa/amp/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -495,6 +495,54 @@ def get_amp(self, data, _data_c=None, **kwargs):
return tf.math.polyval(pi, mass)


@regist_particle("MLP")
class ParticleMLP(Particle):
"""
Multilayer Perceptron like model.

.. math::
R(m) = \\sum_{k} w_k activation(m-m_0+b_k)

lineshape when `interp_N: 11`, `activation: relu`, :math:`b_k=(k-5)/10`, :math:`w_k = exp(k i\\pi/2)`

.. plot::

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> plt.clf()
>>> from tf_pwa.utils import plot_particle_model
>>> plot_params = {f"R_BC_b_{i}": (i-5)/10 for i in range(11)}
>>> plot_params.update({f"R_BC_w_{i}r": 1 for i in range(11)})
>>> plot_params.update({f"R_BC_w_{i}i": i * np.pi/2 for i in range(11)})
>>> axis = plot_particle_model("MLP", params={"interp_N": 11, "activation": "relu"}, plot_params=plot_params)

"""

activation_function = {
"relu2": lambda x: tf.nn.relu(x) ** 2,
"relu3": lambda x: tf.nn.relu(x) ** 3,
}

def init_params(self):
self.interp_N = getattr(self, "interp_N", 3)
self.activation = getattr(self, "activation", "leaky_relu")
self.activation_f = ParticleMLP.activation_function.get(
self.activation, getattr(tf.nn, self.activation)
)
self.bi = self.add_var("b", shape=(self.interp_N,))
self.wi = self.add_var("w", shape=(self.interp_N,), is_complex=True)
self.wi.set_fix_idx(fix_idx=0, fix_vals=(1.0, 0.0))

def get_amp(self, data, _data_c=None, **kwargs):
mass = data["m"] - self.get_mass()
bi = tf.stack(self.bi())
wi = tf.stack(self.wi())
x = tf.expand_dims(mass, axis=-1) + bi
x = self.activation_f(x)
ret = tf.reduce_sum(wi * tf.complex(x, tf.zeros_like(x)), axis=-1)
return ret


@regist_decay("particle-decay")
class ParticleDecay(HelicityDecay):
def get_ls_amp(self, data, data_p, **kwargs):
Expand Down
11 changes: 11 additions & 0 deletions tf_pwa/config_loader/particle_function.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,17 @@ def __call__(self, m, random=False):
ret = a[self.idx]
return self.norm_factor * ret

def cached_call(self, m, **kwargs):
p = self.ha.generate_p_mass(self.name, m, **kwargs)
data = self.config.data.cal_angle(p)

def f():
a = build_amp.build_params_vector(self.decay_group, data)
ret = a[self.idx]
return self.norm_factor * ret

return f

def mass_range(self):
return self.ha.get_mass_range(self.name)

Expand Down
2 changes: 2 additions & 0 deletions tf_pwa/config_loader/tests/test_particle_function.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@ def test_particle(toy_config):
assert f(m).shape == (5, 6)
g = toy_config.get_particle_function("R_BC", d_norm=True)
g.phsp_fractor(m)
cached_g = g.cached_call(m)
assert np.allclose(g(m).numpy(), cached_g().numpy())
g.density(m)
assert g(m).shape == (5, 6)
m_min, m_max = g.mass_range()
Expand Down
Loading