This repository contains python implementation of Self_morphing with OpenCV using FERET and FRGC datasets in the GRL (Generalizable Representation Learning) paper.
- First clone the repository
git clone https://github.com/kashiani/SelfMorphing_landmarks.git
- Create the virtual environment via conda
conda create -n SelfMorphing python=3.7
- Activate the virtual environment.
conda activate SelfMorphing
- Install the dependencies.
pip install -r requirements.txt
run the following command:
python Create_self_morphing_FERET.py --source_images './src_images/FERET_MTCNN' --output './out_images/self_FERET' --proportion_morphing 0.5
run the following command:
python Create_self_morphing_FRGC.py --source_images './src_images/FRGC_MTCNN' --output './out_images/self_FRGC' --proportion_morphing 0.5
If you use this repository or would like to refer the paper, please use the following BibTeX entry
@inproceedings{kashiani2023towards,
title={Towards Generalizable Morph Attack Detection with Consistency Regularization},
booktitle={2023 IEEE International Joint Conference on Biometrics (IJCB)},
pages={1--10},
year={2023},
organization={IEEE}
}
[1] Kashiani, Hossein, et al. "Towards Generalizable Morph Attack Detection with Consistency Regularization." 2023 IEEE International Joint Conference on Biometrics (IJCB). IEEE, 2023.