-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
relatively nicely working fprop tactic on Differentiable, Continuous
- Loading branch information
Showing
9 changed files
with
633 additions
and
185 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,300 @@ | ||
import Mathlib.Topology.Basic | ||
import Mathlib.Topology.Constructions | ||
import Mathlib.Topology.Algebra.Group.Basic | ||
import Mathlib.Topology.Algebra.GroupWithZero | ||
|
||
import Mathlib.Analysis.Calculus.FDeriv.Basic | ||
|
||
import SciLean.Tactic.FProp.Basic | ||
import SciLean.Tactic.FProp.Notation | ||
|
||
namespace SciLean | ||
|
||
|
||
-- Basic rules ----------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
namespace Continuous | ||
|
||
variable | ||
{X : Type _} [TopologicalSpace X] | ||
{Y : Type _} [TopologicalSpace Y] | ||
{Z : Type _} [TopologicalSpace Z] | ||
{ι : Type _} [Fintype ι] | ||
{E : ι → Type _} [∀ i, TopologicalSpace (E i)] | ||
|
||
|
||
theorem id_rule | ||
: Continuous (fun x : X => x) | ||
:= by continuity | ||
|
||
|
||
theorem const_rule (x : X) | ||
: Continuous (fun _ : Y => x) | ||
:= by continuity | ||
|
||
|
||
theorem comp_rule | ||
(g : X → Y) (hg : Continuous g) | ||
(f : Y → Z) (hf : Continuous f) | ||
: Continuous (fun x => f (g x)) | ||
:= Continuous.comp hf hg | ||
|
||
|
||
theorem let_rule | ||
(g : X → Y) (hg : Continuous g) | ||
(f : X → Y → Z) (hf : Continuous (fun (xy : X×Y) => f xy.1 xy.2)) | ||
: Continuous (fun x => let y := g x; f x y) | ||
:= by | ||
rw[(by rfl : (fun x => let y := g x; f x y) = (fun (xy : X×Y) => f xy.1 xy.2)∘(fun x => (x,g x)))] | ||
apply (Continuous.comp hf (by continuity)) | ||
|
||
|
||
theorem pi_rule | ||
(f : (i : ι) → X → E i) (hf : ∀ i, Continuous (f i)) | ||
: Continuous (fun x i => f i x) | ||
:= by continuity | ||
|
||
|
||
end SciLean.Continuous | ||
|
||
|
||
-------------------------------------------------------------------------------- | ||
-- Register Diferentiable ------------------------------------------------------ | ||
-------------------------------------------------------------------------------- | ||
|
||
open Lean Meta SciLean FProp | ||
def Continuous.fpropExt : FPropExt where | ||
fpropName := ``Continuous | ||
getFPropFun? e := | ||
if e.isAppOf ``Continuous then | ||
|
||
if let .some f := e.getArg? 4 then | ||
some f | ||
else | ||
none | ||
else | ||
none | ||
|
||
replaceFPropFun e f := | ||
if e.isAppOf ``Continuous then | ||
e.modifyArg (fun _ => f) 4 | ||
else | ||
e | ||
|
||
identityRule e := | ||
let thm : SimpTheorem := | ||
{ | ||
proof := mkConst ``Continuous.id_rule | ||
origin := .decl ``Continuous.id_rule | ||
rfl := false | ||
} | ||
FProp.tryTheorem? e thm (fun _ => pure none) | ||
|
||
constantRule e := | ||
let thm : SimpTheorem := | ||
{ | ||
proof := mkConst ``Continuous.const_rule | ||
origin := .decl ``Continuous.const_rule | ||
rfl := false | ||
} | ||
FProp.tryTheorem? e thm (fun _ => pure none) | ||
|
||
compRule _ f g := do | ||
let HF ← mkAppM ``Continuous #[f] | ||
let .some hf ← FProp.fprop HF | ||
| trace[Meta.Tactic.fprop.discharge] "failed to prove {HF}" | ||
return none | ||
|
||
let HG ← mkAppM ``Continuous #[g] | ||
let .some hg ← FProp.fprop HG | ||
| trace[Meta.Tactic.fprop.discharge] "failed to prove {HG}" | ||
return none | ||
|
||
mkAppM ``Continuous.comp_rule #[g,hg,f,hf] | ||
|
||
lambdaLetRule _ f g := do | ||
-- let thm : SimpTheorem := | ||
-- { | ||
-- proof := mkConst ``Continuous.let_rule | ||
-- origin := .decl ``Continuous.let_rule | ||
-- rfl := false | ||
-- } | ||
-- FProp.tryTheorem? e thm (fun _ => pure none) | ||
|
||
let HF ← mkAppM ``Continuous #[(← mkUncurryFun 2 f)] | ||
let .some hf ← FProp.fprop HF | ||
| trace[Meta.Tactic.fprop.discharge] "failed to prove {HF}" | ||
return none | ||
|
||
let HG ← mkAppM ``Continuous #[g] | ||
let .some hg ← FProp.fprop HG | ||
| trace[Meta.Tactic.fprop.discharge] "failed to prove {HG}" | ||
return none | ||
|
||
mkAppM ``Continuous.let_rule #[g,hg,f,hf] | ||
|
||
lambdaLambdaRule e _ := | ||
let thm : SimpTheorem := | ||
{ | ||
proof := mkConst ``Continuous.pi_rule | ||
origin := .decl ``Continuous.pi_rule | ||
rfl := false | ||
} | ||
FProp.tryTheorem? e thm (fun _ => pure none) | ||
|
||
discharger _ := return none | ||
|
||
-- register fderiv | ||
#eval show Lean.CoreM Unit from do | ||
modifyEnv (λ env => FProp.fpropExt.addEntry env (``Continuous, Continuous.fpropExt)) | ||
|
||
|
||
|
||
-------------------------------------------------------------------------------- | ||
-- Function Rules -------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
open SciLean Continuous | ||
|
||
variable | ||
{X : Type _} [TopologicalSpace X] | ||
{Y : Type _} [TopologicalSpace Y] | ||
{Z : Type _} [TopologicalSpace Z] | ||
{R : Type _} [TopologicalSpace R] | ||
{ι : Type _} [Fintype ι] | ||
{E : ι → Type _} [∀ i, TopologicalSpace (E i)] | ||
|
||
|
||
-- Id -------------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
|
||
@[fprop_rule] | ||
theorem id.arg_a.Continuous | ||
: Continuous (id : X → X) := by continuity | ||
|
||
|
||
-- Prod ------------------------------------------------------------------------ | ||
-------------------------------------------------------------------------------- | ||
|
||
-- Prod.mk -------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop_rule] | ||
theorem Prod.mk.arg_fstsnd.Continuous_comp | ||
(g : X → Y) (hg : Continuous g) | ||
(f : X → Z) (hf : Continuous f) | ||
: Continuous fun x => (g x, f x) | ||
:= by continuity | ||
|
||
|
||
|
||
-- Prod.fst -------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop_rule] | ||
theorem Prod.fst.arg_self.Continuous_comp | ||
(f : X → Y×Z) (hf : Continuous f) | ||
: Continuous (fun x => (f x).1) | ||
:= Continuous.fst hf | ||
|
||
|
||
|
||
-- Prod.snd -------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop_rule] | ||
theorem Prod.snd.arg_self.Continuous_comp | ||
(f : X → Y×Z) (hf : Continuous f) | ||
: Continuous (fun x => (f x).2) | ||
:= Continuous.snd hf | ||
|
||
|
||
|
||
-- Function.comp --------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop_rule] | ||
theorem Function.comp.arg_x.Continuous_comp | ||
(f : Y → Z) (hf : Continuous f) | ||
(g : X → Y) (hg : Continuous g) | ||
: Continuous (f ∘ g) | ||
:= Continuous.comp hf hg | ||
|
||
|
||
|
||
-- Neg.neg --------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop_rule] | ||
theorem Neg.neg.arg_a2.Continuous_comp | ||
[Neg Y] [ContinuousNeg Y] | ||
(f : X → Y) (hf : Continuous f) | ||
: Continuous fun x => - f x | ||
:= by continuity | ||
|
||
|
||
|
||
-- HAdd.hAdd ------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop_rule] | ||
theorem HAdd.hAdd.arg_a4a5.Continuous_comp | ||
[Add Y] [ContinuousAdd Y] | ||
(f g : X → Y) (hf : Continuous f) (hg : Continuous g) | ||
: Continuous fun x => f x + g x | ||
:= by continuity | ||
|
||
|
||
|
||
-- HSub.hSub ------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop_rule] | ||
theorem HSub.hSub.arg_a4a5.Continuous_comp | ||
[Sub Y] [ContinuousSub Y] | ||
(f g : X → Y) (hf : Continuous f) (hg : Continuous g) | ||
: Continuous fun x => f x - g x | ||
:= by continuity | ||
|
||
|
||
|
||
-- HMul.hMul --------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop_rule] | ||
def HMul.hMul.arg_a4a5.Continuous_comp | ||
[Mul Y] [ContinuousMul Y] | ||
(f g : X → Y) (hf : Continuous f) (hg : Continuous g) | ||
: Continuous (fun x => f x * g x) | ||
:= Continuous.mul hf hg | ||
|
||
|
||
|
||
-- SMul.sMul --------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop_rule] | ||
def SMul.sMul.arg_a4a5.Continuous_comp | ||
[SMul R Y] [ContinuousSMul R Y] | ||
(f : X → R) (g : X → Y) (hf : Continuous f) (hg : Continuous g) | ||
: Continuous (fun x => f x • g x) | ||
:= Continuous.smul hf hg | ||
|
||
|
||
|
||
-- HDiv.hDiv --------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
|
||
@[fprop_rule] | ||
def HDiv.hDiv.arg_a4a5.Continuous_comp | ||
[GroupWithZero K] [TopologicalSpace K] [ContinuousMul K] [HasContinuousInv₀ K] | ||
(f : R → K) (g : R → K) | ||
(hf : Continuous f) (hg : Continuous g) (hx : ∀ x, g x ≠ 0) | ||
: Continuous (fun x => f x / g x) | ||
:= Continuous.div hf hg hx | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
import SciLean.FunctionSpaces.Continuous.Basic | ||
import SciLean.Profile | ||
|
||
set_option profiler true | ||
set_option profiler.threshold 10 | ||
|
||
example : Continuous (fun x : ℝ => | ||
let x1 := x | ||
let x2 := x + x1 | ||
let x3 := x + x1 + x2 | ||
let x4 := x + x1 + x2 + x3 | ||
let x5 := x + x1 + x2 + x3 + x4 | ||
let x6 := x + x1 + x2 + x3 + x4 + x5 | ||
let x7 := x + x1 + x2 + x3 + x4 + x5 + x6 | ||
x7) := by fprop | ||
|
||
|
||
example : Continuous (fun x : ℝ => | ||
let x1 := x | ||
let x2 := x + x1 | ||
let x3 := x + x1 + x2 | ||
let x4 := x + x1 + x2 + x3 | ||
let x5 := x + x1 + x2 + x3 + x4 | ||
let x6 := x + x1 + x2 + x3 + x4 + x5 | ||
let x7 := x + x1 + x2 + x3 + x4 + x5 + x6 | ||
x7) := by continuity |
Oops, something went wrong.