-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
1,042 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,321 @@ | ||
import Mathlib.Data.Fintype.Basic | ||
import Mathlib.Algebra.Order.Group.Unbundled.Basic | ||
import Mathlib.Data.Int.Interval | ||
|
||
import SciLean.Data.IndexType.Iterator | ||
import SciLean.Util.SorryProof | ||
|
||
namespace SciLean | ||
|
||
open Function | ||
|
||
class IndexType (I : Type u) | ||
extends Fintype I, Stream (IndexType.Iterator I) I, Size I, FirstLast I I | ||
where | ||
toFin : I → Fin size | ||
fromFin : Fin size → I | ||
left_inv : LeftInverse fromFin toFin | ||
right_inv : RightInverse fromFin toFin | ||
first_last : | ||
(size = 0 ∧ firstLast? = none) | ||
∨ | ||
((_ : size ≠ 0) → firstLast? = some (fromFin ⟨0,by omega⟩, fromFin ⟨size - 1, by omega⟩)) | ||
-- TODO: add something about Iterators such that calling `next?` gives you one more element | ||
|
||
open IndexType in | ||
def finEquiv (I : Type u) [IndexType I] : I ≃ Fin (size I) where | ||
toFun := toFin | ||
invFun := fromFin | ||
left_inv := left_inv | ||
right_inv := right_inv | ||
|
||
|
||
namespace IndexType | ||
|
||
def fromNat {ι} [IndexType ι] (n : Nat) (h : n < size ι := by first | omega | simp_all; omega) : ι := | ||
fromFin ⟨n, h⟩ | ||
|
||
---------------------------------------------------------------------------------------------------- | ||
-- Instances --------------------------------------------------------------------------------------- | ||
---------------------------------------------------------------------------------------------------- | ||
|
||
instance [FirstLast I I] (r : Range I) : FirstLast r I := | ||
match r with | ||
| .empty => ⟨.none⟩ | ||
| .full => ⟨FirstLast.firstLast? I⟩ | ||
| .interval a b => ⟨.some (a,b)⟩ | ||
|
||
|
||
instance : IndexType Empty where | ||
toFin x := Empty.elim x | ||
fromFin i := by have := i.2; aesop | ||
next? _ := .none | ||
left_inv := by intro x; aesop | ||
right_inv := sorry_proof | ||
first_last := sorry_proof | ||
|
||
|
||
instance : IndexType Unit where | ||
toFin _ := 1 | ||
fromFin _ := () | ||
next? _ := .none | ||
left_inv := by intro; aesop | ||
right_inv := by intro; aesop | ||
first_last := by aesop | ||
|
||
|
||
instance : IndexType Bool where | ||
size := 2 | ||
toFin x := match x with | false => 0 | true => 1 | ||
fromFin x := match x with | ⟨0,_⟩ => false | ⟨1,_⟩ => true | ||
next? s := | ||
match s with | ||
| .start r => | ||
match r with | ||
| .empty => none | ||
| .full => .some (false, .val false r) | ||
| .interval a _ => .some (a, .val a r) | ||
|
||
| .val val r => | ||
match r, val with | ||
| .empty, _ => .none | ||
| .full, false => .some (true, .val true r) | ||
| .full, true => .none | ||
| .interval a b, x => | ||
if a = b | ||
then .none | ||
else if x = a | ||
then .some (b, .val b r) | ||
else .none | ||
left_inv := by intro; aesop | ||
right_inv := by intro; aesop | ||
first_last := by aesop | ||
|
||
|
||
instance : IndexType (Fin n) where | ||
toFin x := x | ||
fromFin x := x | ||
next? s := | ||
match s with | ||
| .start r => | ||
match r with | ||
| .empty => none | ||
| .full => | ||
if h : n ≠ 0 then | ||
let x : Fin n := ⟨0, by omega⟩ | ||
.some (x, .val x r) | ||
else | ||
.none | ||
| .interval a _ => .some (a, .val a r) | ||
|
||
| .val val r => | ||
match r with | ||
| .empty => .none | ||
| .full => | ||
if h : val.1 + 1 < n then | ||
let x := ⟨val.1+1,by omega⟩ | ||
.some (x, .val x r) | ||
else | ||
.none | ||
| .interval a b => | ||
if a.1 ≤ b.1 then | ||
if h : val.1 + 1 ≤ b.1 then | ||
let x := ⟨val.1+1,by omega⟩ | ||
.some (x, .val x r) | ||
else | ||
.none | ||
else | ||
if h : b.1 + 1 ≤ val.1 then | ||
let x := ⟨val.1-1,by omega⟩ | ||
.some (x, .val x r) | ||
else | ||
.none | ||
left_inv := by intro; aesop | ||
right_inv := by intro; aesop | ||
first_last := by simp[firstLast?]; aesop | ||
|
||
|
||
|
||
instance {α β} [IndexType α] [IndexType β] : IndexType (α × β) where | ||
toFin := fun (a,b) => ⟨(toFin a).1 + size α * (toFin b).1, by sorry_proof⟩ | ||
fromFin ij := | ||
-- this choice will result in column major matrices | ||
let i : Fin (size α) := ⟨ij.1 % size α, by sorry_proof⟩ | ||
let j : Fin (size β) := ⟨ij.1 / size α, by sorry_proof⟩ | ||
(fromFin i, fromFin j) | ||
next? s := | ||
match s with | ||
| .start r => | ||
let (ri, rj) := r.ofProd | ||
match first? ri, first? rj with | ||
| .some i, .some j => .some ((i,j), .val (i,j) r) | ||
| _, _ => .none | ||
| .val (i,j) r => | ||
let (ri,rj) := r.ofProd | ||
let si := Iterator.val i ri | ||
let sj := Iterator.val j rj | ||
match Stream.next? si with | ||
| .some (i', si) => .some ((i',j), si.prod sj) | ||
| .none => | ||
match first? ri, Stream.next? sj with | ||
| .some i', .some (j', sj) => .some ((i',j'), (Iterator.val i' ri).prod sj) | ||
| _, _ => .none | ||
left_inv := by intro; sorry_proof | ||
right_inv := by intro; sorry_proof | ||
first_last := by simp[firstLast?]; sorry_proof | ||
|
||
|
||
instance {α β} [IndexType α] [IndexType β] : IndexType ((_ : α) × β) where | ||
toFin := fun ⟨a,b⟩ => ⟨(toFin a).1 + size α * (toFin b).1, by sorry_proof⟩ | ||
fromFin ij := | ||
-- this choice will result in column major matrices | ||
let i : Fin (size α) := ⟨ij.1 % size α, by sorry_proof⟩ | ||
let j : Fin (size β) := ⟨ij.1 / size α, by sorry_proof⟩ | ||
⟨fromFin i, fromFin j⟩ | ||
firstLast? := | ||
match FirstLast.firstLast? α, FirstLast.firstLast? β with | ||
| .some (a,a'), .some (b,b') => .some (⟨a,b⟩,⟨a',b'⟩) | ||
| _, _ => .none | ||
next? s := | ||
match s with | ||
| .start r => | ||
let (ri, rj) := r.ofSigma | ||
match first? ri, first? rj with | ||
| .some i, .some j => .some (⟨i,j⟩, .val ⟨i,j⟩ r) | ||
| _, _ => .none | ||
| .val ⟨i,j⟩ r => | ||
let (ri,rj) := r.ofSigma | ||
let si := Iterator.val i ri | ||
let sj := Iterator.val j rj | ||
match Stream.next? si with | ||
| .some (i', si) => .some (⟨i',j⟩, si.sprod sj) | ||
| .none => | ||
match first? ri, Stream.next? sj with | ||
| .some i', .some (j', sj) => .some (⟨i',j'⟩, (Iterator.val i' ri).sprod sj) | ||
| _, _ => .none | ||
left_inv := by intro; sorry_proof | ||
right_inv := by intro; sorry_proof | ||
first_last := by sorry_proof | ||
|
||
|
||
|
||
instance {α β} [IndexType α] [IndexType β] : IndexType (α ⊕ β) where | ||
toFin := fun ab => | ||
match ab with | ||
| .inl a => ⟨(toFin a).1, by sorry_proof⟩ | ||
| .inr b => ⟨size α + (toFin b).1, by sorry_proof⟩ | ||
fromFin ij := | ||
if h : ij.1 < size α then | ||
.inl (fromNat ij.1) | ||
else | ||
.inr (fromNat (ij.1 - size α)) | ||
next? s := | ||
-- there has to be a better implementation of this ... | ||
-- we should somehow use `Iterator.ofSum` and then combine them back together | ||
match s with | ||
| .start r => | ||
match first? r with | ||
| .some x => .some (x, .val x r) | ||
| .none => .none | ||
| .val x r => | ||
match x, r.ofSum with | ||
| .inl a, .inl (ra, rb) => | ||
match Stream.next? (Iterator.val a ra) with | ||
| .some (a',_) => .some (.inl a', .val (.inl a') r) | ||
| .none => | ||
match first? rb with | ||
| .some b' => .some (.inr b', .val (.inr b') r) | ||
| .none => .none | ||
| .inr b, .inl (_, rb) => | ||
match Stream.next? (Iterator.val b rb) with | ||
| .some (b',_) => .some (.inr b', .val (.inr b') r) | ||
| .none => .none | ||
| .inl a, .inr (_, ra) => | ||
match Stream.next? (Iterator.val a ra) with | ||
| .some (a',_) => .some (.inl a', .val (.inl a') r) | ||
| .none => .none | ||
| .inr b, .inr (rb, ra) => | ||
match Stream.next? (Iterator.val b rb) with | ||
| .some (b',_) => .some (.inr b', .val (.inr b') r) | ||
| .none => | ||
match first? ra with | ||
| .some a' => .some (.inl a', .val (.inl a') r) | ||
| .none => .none | ||
left_inv := by intro; sorry_proof | ||
right_inv := by intro; sorry_proof | ||
first_last := by sorry_proof | ||
|
||
|
||
open Set in | ||
instance (a b : Int) : IndexType (Icc a b) where | ||
size := size (Icc a b) -- why do we do we need to specify this? | ||
toFin i := ⟨(i.1 - a).toNat, sorry_proof⟩ | ||
fromFin i := ⟨a + i.1, sorry_proof⟩ | ||
firstLast? := | ||
if h :a ≤ b then | ||
.some (⟨a,by simpa⟩,⟨b, by simpa⟩) | ||
else | ||
.none | ||
next? s := | ||
match s with | ||
| .start r => | ||
match r with | ||
| .empty => none | ||
| .full => | ||
if h : a ≤ b then | ||
let x : Icc a b := ⟨a, by simpa⟩ | ||
.some (x, .val x r) | ||
else | ||
.none | ||
| .interval a' _ => .some (a', .val a' r) | ||
|
||
| .val val r => | ||
match r with | ||
| .empty => .none | ||
| .full => | ||
if h : val.1 + 1 ≤ b then | ||
have := val.2 | ||
let x := ⟨val.1+1,by simp_all; omega⟩ | ||
.some (x, .val x r) | ||
else | ||
.none | ||
| .interval c d => | ||
if _ : c.1 ≤ d.1 then | ||
if h : val.1 + 1 ≤ b then | ||
have := val.2 | ||
let x := ⟨val.1+1,by simp_all; omega⟩ | ||
.some (x, .val x r) | ||
else | ||
.none | ||
else | ||
if h : d.1 + 1 ≤ val.1 then | ||
have := val.2; have := c.2; have := d.2 | ||
let x := ⟨val.1-1,by simp_all; omega⟩ | ||
.some (x, .val x r) | ||
else | ||
.none | ||
left_inv := sorry_proof | ||
right_inv := sorry_proof | ||
first_last := sorry_proof | ||
|
||
|
||
|
||
---------------------------------------------------------------------------------------------------- | ||
-- Basic properties -------------------------------------------------------------------------------- | ||
---------------------------------------------------------------------------------------------------- | ||
|
||
variable {ι : Type v} [IndexType ι] | ||
|
||
|
||
@[simp, simp_core] | ||
theorem toFin_Fin (i : Fin n) : | ||
toFin i = i := | ||
rfl | ||
|
||
@[simp, simp_core] | ||
theorem fromFin_toFin {I} [IndexType I] (i : I) : | ||
fromFin (toFin i) = i := sorry_proof | ||
|
||
@[simp, simp_core] | ||
theorem toFin_fromFin {I} [IndexType I] (i : Fin (size I)) : | ||
toFin (fromFin (I:=I) i) = i := sorry_proof |
Oops, something went wrong.