-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
254 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
import SciLean | ||
|
||
open SciLean | ||
|
||
def dot {n : Nat} (x y : Float^[n]) : Float := ∑ i, x[i] * y[i] | ||
|
||
-- todo: make this working!!!s | ||
#eval ⊞[1.0,1.0] | ||
|
||
#eval dot ⊞[1.0,1.0] ⊞[1.0,1.0] | ||
|
||
-- todo: fix error message | ||
#eval dot ⊞[1.0,1.0] ⊞[1.0,1.0,1.0] | ||
|
||
|
||
def u := ⊞[(1.0 : Float), 2.0] | ||
|
||
#eval u[0] | ||
#eval u[1] | ||
#eval ∑ i, u[i] | ||
#eval fun i => u[i] | ||
|
||
-- todo: support creating matrix literals | ||
-- def A := ⊞[1.0, 2.0; 3.0, 4.0] | ||
|
||
-- remove this once `A` is defined properly | ||
variable (A : Float^[2,2]) | ||
|
||
-- switch to eval once `A` is defined properly | ||
#check A[0,1] | ||
#check A[(0,1)] | ||
|
||
|
||
variable {Cont Idx Elem} [DecidableEq Idx] [ArrayType Cont Idx Elem] [ArrayTypeNotation Cont Idx Elem] | ||
(f : Idx → Elem) | ||
|
||
#check ⊞ i => f i | ||
|
||
|
||
def outerProduct1 {n m : Nat} (x : Float^[n]) (y : Float^[m]) : Float^[n,m] := | ||
⊞ i j => x[i]*y[j] | ||
|
||
|
||
def outerProduct2 {n m : Nat} (x : Float^[n]) (y : Float^[m]) := Id.run do | ||
let mut A : Float^[n,m] := 0 | ||
for i in IndexType.univ (Fin n) do | ||
for j in IndexType.univ (Fin m) do | ||
A[i,j] := x[i]*y[j] | ||
return A | ||
|
||
|
||
def outerProduct3 {n m : Nat} (x : Float^[n]) (y : Float^[m]) := Id.run do | ||
let mut A : Float^[n,m] := 0 | ||
for (i,j) in (IndexType.univ (Fin n × Fin m)) do | ||
A[i,j] := x[i]*y[j] | ||
return A | ||
|
||
|
||
def outerProduct4 {n m : Nat} (x : Float^[n]) (y : Float^[m]) : Float^[n,m] := Id.run do | ||
let mut A : DataArray Float := .mkEmpty (n*m) -- empty array with capacity `n*m` | ||
for (i,j) in (IndexType.univ (Fin n × Fin m)) do | ||
A := A.push (x[i]*y[j]) | ||
return { data:= A, h_size:= sorry } | ||
|
||
|
||
#eval outerProduct1 ⊞[(1.0 : Float), 2.0] ⊞[(3.0 : Float), 4.0] | ||
#eval outerProduct2 ⊞[(1.0 : Float), 2.0] ⊞[(3.0 : Float), 4.0] | ||
#eval outerProduct3 ⊞[(1.0 : Float), 2.0] ⊞[(3.0 : Float), 4.0] | ||
#eval outerProduct4 ⊞[(1.0 : Float), 2.0] ⊞[(3.0 : Float), 4.0] | ||
|
||
|
||
-- This function already exists as `IndexType.naturalEquiv` | ||
open IndexType | ||
def naturalEquiv' (I J : Type) [IndexType I] [IndexType J] (h : card I = card J) : I ≃ J := { | ||
toFun := fun i => fromFin (h ▸ toFin i) | ||
invFun := fun j => fromFin (h ▸ toFin j) | ||
left_inv := sorry | ||
right_inv := sorry | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
import SciLean | ||
|
||
open SciLean | ||
|
||
|
||
theorem mapMono_mapMono {I} [IndexType I] (x : Float^[I]) (f g : Float → Float) : | ||
(x.mapMono f |>.mapMono g) = x.mapMono fun x => f (g x) := sorry | ||
|
||
open Scalar | ||
def softMax {I} [IndexType I] | ||
(r : Float) (x : Float^[I]) : Float^[I] := Id.run do | ||
let m := x.reduce (max · ·) | ||
let x := x.mapMono fun x => x-m | ||
let x := x.mapMono fun x => exp r*x | ||
let w := x.reduce (·+·) | ||
let x := x.mapMono fun x => x/w | ||
return x | ||
|
||
|
||
set_option trace.Meta.Tactic.simp.rewrite true in | ||
def softMax_optimized {I} [IndexType I] (r : Float) (x : Float^[I]) := | ||
(softMax r x) | ||
rewrite_by | ||
unfold softMax | ||
let_unfold x | ||
simp (config:={zeta:=false}) only [mapMono_mapMono] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
import SciLean | ||
import SciLean.Tactic.DeduceBy | ||
|
||
open SciLean Scalar | ||
|
||
|
||
---------------------------------------------------------------------------------------------------- | ||
-- Transformations and Reductions ------------------------------------------------------------------ | ||
---------------------------------------------------------------------------------------------------- | ||
|
||
|
||
def map {I : Type} [IndexType I] (x : Float^[I]) (f : Float → Float) := Id.run do | ||
let mut x' := x | ||
for i in IndexType.univ I do | ||
x'[i] := f x'[i] | ||
return x' | ||
|
||
|
||
#eval ⊞[(1.0 : Float),2.0,3.0].mapMono (fun x => sqrt x) | ||
|
||
#eval ⊞[1.0,2.0;3.0,4.0].mapMono (fun x => sqrt x) | ||
|
||
#eval (⊞ (i j k : Fin 2) => (IndexType.toFin (i,j,k)).toFloat).mapMono (fun x => sqrt x) | ||
|
||
#eval (0 : Float^[3]) |>.mapIdxMono (fun i _ => i.toFloat) |>.map (fun x => sqrt x) | ||
|
||
|
||
#eval ⊞[(1.0 : Float),2.0,3.0].fold (·+·) 0 | ||
#eval ⊞[(1.0 :Float),2.0,3.0].reduce (min · ·) | ||
|
||
|
||
def softMax {I} [IndexType I] | ||
(r : Float) (x : Float^[I]) : Float^[I] := Id.run do | ||
let m := x.reduce (max · ·) | ||
let x := x.mapMono fun x => x-m | ||
let x := x.mapMono fun x => exp r*x | ||
let w := x.reduce (·+·) | ||
let x := x.mapMono fun x => x/w | ||
return x | ||
|
||
|
||
def x := ⊞[(1.0:Float),2.0,3.0,4.0] | ||
-- def A := ⊞[1.0,2.0;3.0,4.0] | ||
|
||
#eval ∑ i, x[i] | ||
#eval ∏ i, x[i] | ||
-- #eval ∑ i j, A[i,j] | ||
-- #eval ∏ i j, A[i,j] | ||
|
||
def matMul {n m : Nat} (A : Float^[n,m]) (x : Float^[m]) := | ||
⊞ i => ∑ j, A[i,j] * x[j] | ||
|
||
def trace {n : Nat} (A : Float^[n,n]) := | ||
∑ i, A[i,i] | ||
|
||
|
||
---------------------------------------------------------------------------------------------------- | ||
-- Convolution and Operations on Indices ----------------------------------------------------------- | ||
---------------------------------------------------------------------------------------------------- | ||
|
||
-- intentionally broken | ||
-- def conv1d {n k : Nat} (x : Float^[n]) (w : Float^[k]) := | ||
-- ⊞ (i : Fin n) => ∑ j, w[j] * x[i-j] | ||
|
||
def Fin.shift {n} (i : Fin n) (j : ℤ) : Fin n := | ||
{ val := ((i.1 + j) % n ).toNat, isLt := by sorry } | ||
|
||
def conv1d {n : Nat} (k : Nat) (w : Float^[[-k:k]]) (x : Float^[n]) := | ||
⊞ (i : Fin n) => ∑ j, w[j] * x[i.shift j.1] | ||
|
||
def conv2d' {n m k : Nat} (w : Float^[[-k:k],[-k:k]]) (x : Float^[n,m]) := | ||
⊞ (i : Fin n) (j : Fin m) => ∑ a b, w[a,b] * x[i.shift a, j.shift b] | ||
|
||
def conv2d {n m : Nat} (k : Nat) (J : Type) {I : Type} [IndexType I] [IndexType J] [DecidableEq J] | ||
(w : Float^[J,I,[-k:k],[-k:k]]) (b : Float^[J,n,m]) (x : Float^[I,n,m]) : Float^[J,n,m] := | ||
⊞ κ (i : Fin n) (j : Fin m) => b[κ,i,j] + ∑ ι a b, w[κ,ι,a,b] * x[ι, i.shift a, j.shift b] | ||
|
||
|
||
---------------------------------------------------------------------------------------------------- | ||
-- Pooling and Difficulties with Dependent Types --------------------------------------------------- | ||
---------------------------------------------------------------------------------------------------- | ||
|
||
def avgPool_v1 (x : Float^[n]) : Float^[n/2] := | ||
⊞ (i : Fin (n/2)) => | ||
let i₁ : Fin n := ⟨2*i.1, by omega⟩ | ||
let i₂ : Fin n := ⟨2*i.1+1, by omega⟩ | ||
0.5 * (x[i₁] + x[i₂]) | ||
|
||
|
||
def avgPool_v2 (x : Float^[2*n]) : Float^[n] := | ||
⊞ (i : Fin n) => | ||
let i₁ : Fin (2*n) := ⟨2*i.1, by omega⟩ | ||
let i₂ : Fin (2*n) := ⟨2*i.1+1, by omega⟩ | ||
0.5 * (x[i₁] + x[i₂]) | ||
|
||
def avgPool_v3 (x : Float^[n]) {m} (h : m = n/2 := by deduce_by norm_num) : Float^[m] := | ||
⊞ (i : Fin m) => | ||
let i1 : Fin n := ⟨2*i.1, by omega⟩ | ||
let i2 : Fin n := ⟨2*i.1+1, by omega⟩ | ||
0.5 * (x[i1] + x[i2]) | ||
|
||
def avgPool_v4 (x : Float^[n]) {m} (h : 2*m = n := by deduce_by norm_num) : Float^[m] := | ||
⊞ (i : Fin m) => | ||
let i1 : Fin n := ⟨2*i.1, by omega⟩ | ||
let i2 : Fin n := ⟨2*i.1+1, by omega⟩ | ||
0.5 * (x[i1] + x[i2]) | ||
|
||
|
||
variable (x : Float^[11]) | ||
#check avgPool_v1 ⊞[(1.0 : Float), 2.0, 3.0, 4.0, 5.0] | ||
#check avgPool_v2 x | ||
#check avgPool_v3 ⊞[(1.0 : Float), 2.0, 3.0, 4.0, 5.0] | ||
#check avgPool ⊞[(1.0 : Float), 2.0, 3.0, 4.0, 5.0] | ||
#check avgPool_v4 ⊞[(1.0 : Float), 2.0, 3.0, 4.0] | ||
|
||
|
||
variable {I} [IndexType I] [DecidableEq I] | ||
|
||
def avgPool2d | ||
(x : Float^[I,n₁,n₂]) {m₁ m₂} | ||
(h₁ : m₁ = n₁/2 := by deduce_by norm_num) | ||
(h₂ : m₂ = n₂/2 := by deduce_by norm_num) : Float^[I,m₁,m₂] := | ||
⊞ (ι : I) (i : Fin m₁) (j : Fin m₂) => | ||
let i₁ : Fin n₁ := ⟨2*i.1, by omega⟩ | ||
let i₂ : Fin n₁ := ⟨2*i.1+1, by omega⟩ | ||
let j₁ : Fin n₂ := ⟨2*j.1, by omega⟩ | ||
let j₂ : Fin n₂ := ⟨2*j.1+1, by omega⟩ | ||
0.5 * (x[ι,i₁,j₁] + x[ι,i₁,j₂] + x[ι,i₂,j₁] + x[ι,i₂,j₂]) | ||
|
||
|
||
---------------------------------------------------------------------------------------------------- | ||
-- Simple Neural Network --------------------------------------------------------------------------- | ||
---------------------------------------------------------------------------------------------------- | ||
|
||
def dense (n : Nat) (A : Float^[n,I]) (b : Float^[n]) (x : Float^[I]) : Float^[n] := | ||
⊞ (i : Fin n) => b[i] + ∑ j, A[i,j] * x[j] | ||
|
||
def SciLean.DataArrayN.resize3 (x : Float^[I]) (a b c : Nat) (h : a*b*c = IndexType.card I) : Float^[a,b,c] := | ||
⟨x.data, by simp[IndexType.card]; rw[← mul_assoc,←x.2,h]⟩ | ||
|
||
def nnet := fun (w₁,b₁,w₂,b₂,w₃,b₃) (x : Float^[28,28]) => | ||
x |>.resize3 1 28 28 (by decide) | ||
|> conv2d 1 (Fin 8) w₁ b₁ | ||
|>.mapMono (fun x => max x 0) | ||
|> avgPool2d | ||
|> dense (I:=Fin 8 × Fin 14 × Fin 14) 30 w₂ b₂ -- deduce_by does not play well :( | ||
|>.mapMono (fun x => max x 0) | ||
|> dense 10 w₃ b₃ | ||
|> softMax 0.1 |