Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

eegbci api: allow downloading multiple subjects #12918

Merged
merged 7 commits into from
Oct 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/changes/devel/12918.apichange.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
Deprecate ``subject`` parameter in favor of ``subjects`` in :func:`mne.datasets.eegbci.load_data`, by `Stefan Appelhoff`_.
18 changes: 12 additions & 6 deletions doc/documentation/datasets.rst
Original file line number Diff line number Diff line change
Expand Up @@ -161,17 +161,23 @@ EEGBCI motor imagery
====================
:func:`mne.datasets.eegbci.load_data`

The EEGBCI dataset is documented in :footcite:`SchalkEtAl2004`. The data set is
available at PhysioNet :footcite:`GoldbergerEtAl2000`. The dataset contains
64-channel EEG recordings from 109 subjects and 14 runs on each subject in EDF+
format. The recordings were made using the BCI2000 system. To load a subject,
do::
The EEGBCI dataset is documented in :footcite:`SchalkEtAl2004` and on the
`PhysioNet documentation page <https://physionet.org/content/eegmmidb/1.0.0/>`_.
The data set is available at PhysioNet :footcite:`GoldbergerEtAl2000`.
It contains 64-channel EEG recordings from 109 subjects and 14 runs on each
subject in EDF+ format. The recordings were made using the BCI2000 system.
To load a subject, do::

from mne.io import concatenate_raws, read_raw_edf
from mne.datasets import eegbci
raw_fnames = eegbci.load_data(subject, runs)
subjects = [1] # may vary
runs = [4, 8, 12] # may vary
raw_fnames = eegbci.load_data(subjects, runs)
raws = [read_raw_edf(f, preload=True) for f in raw_fnames]
# concatenate runs from subject
raw = concatenate_raws(raws)
# make channel names follow standard conventions
eegbci.standardize(raw)

.. topic:: Examples

Expand Down
11 changes: 6 additions & 5 deletions examples/decoding/decoding_csp_eeg.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,9 @@

See https://en.wikipedia.org/wiki/Common_spatial_pattern and
:footcite:`Koles1991`. The EEGBCI dataset is documented in
:footcite:`SchalkEtAl2004` and is available at PhysioNet
:footcite:`GoldbergerEtAl2000`.
:footcite:`SchalkEtAl2004` and on the
`PhysioNet documentation page <https://physionet.org/content/eegmmidb/1.0.0/>`_.
The dataset is available at PhysioNet :footcite:`GoldbergerEtAl2000`.
"""
# Authors: Martin Billinger <martin.billinger@tugraz.at>
#
Expand Down Expand Up @@ -40,15 +41,15 @@
# avoid classification of evoked responses by using epochs that start 1s after
# cue onset.
tmin, tmax = -1.0, 4.0
subject = 1
subjects = 1
runs = [6, 10, 14] # motor imagery: hands vs feet

raw_fnames = eegbci.load_data(subject, runs)
raw_fnames = eegbci.load_data(subjects, runs)
raw = concatenate_raws([read_raw_edf(f, preload=True) for f in raw_fnames])
eegbci.standardize(raw) # set channel names
montage = make_standard_montage("standard_1005")
raw.set_montage(montage)
raw.annotations.rename(dict(T1="hands", T2="feet"))
raw.annotations.rename(dict(T1="hands", T2="feet")) # as documented on PhysioNet
raw.set_eeg_reference(projection=True)

# Apply band-pass filter
Expand Down
2 changes: 1 addition & 1 deletion examples/preprocessing/eeg_bridging.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@
raw_data = dict() # store infos for electrode positions
for sub in range(1, 11):
print(f"Computing electrode bridges for subject {sub}")
raw_fname = mne.datasets.eegbci.load_data(subject=sub, runs=(1,))[0]
raw_fname = mne.datasets.eegbci.load_data(subjects=sub, runs=(1,))[0]
raw = mne.io.read_raw(raw_fname, preload=True, verbose=False)
mne.datasets.eegbci.standardize(raw) # set channel names
raw.set_montage(montage, verbose=False)
Expand Down
2 changes: 1 addition & 1 deletion examples/preprocessing/muscle_ica.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@

for sub in (1, 2):
raw = mne.io.read_raw_edf(
mne.datasets.eegbci.load_data(subject=sub, runs=(1,))[0], preload=True
mne.datasets.eegbci.load_data(subjects=sub, runs=(1,))[0], preload=True
)
mne.datasets.eegbci.standardize(raw) # set channel names
montage = mne.channels.make_standard_montage("standard_1005")
Expand Down
2 changes: 1 addition & 1 deletion examples/time_frequency/time_frequency_erds.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@
# First, we load and preprocess the data. We use runs 6, 10, and 14 from
# subject 1 (these runs contains hand and feet motor imagery).

fnames = eegbci.load_data(subject=1, runs=(6, 10, 14))
fnames = eegbci.load_data(subjects=1, runs=(6, 10, 14))
raw = concatenate_raws([read_raw_edf(f, preload=True) for f in fnames])

raw.rename_channels(lambda x: x.strip(".")) # remove dots from channel names
Expand Down
80 changes: 55 additions & 25 deletions mne/datasets/eegbci/eegbci.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from os import path as op
from pathlib import Path

from ...utils import _url_to_local_path, logger, verbose
from ...utils import _url_to_local_path, logger, verbose, warn
from ..utils import _do_path_update, _downloader_params, _get_path, _log_time_size

EEGMI_URL = "https://physionet.org/files/eegmmidb/1.0.0/"
Expand All @@ -21,7 +21,9 @@ def data_path(url, path=None, force_update=False, update_path=None, *, verbose=N

This is a low-level function useful for getting a local copy of a remote EEGBCI
dataset :footcite:`SchalkEtAl2004`, which is also available at PhysioNet
:footcite:`GoldbergerEtAl2000`.
:footcite:`GoldbergerEtAl2000`. Metadata, such as the meaning of event markers
may be obtained from the
`PhysioNet documentation page <https://physionet.org/content/eegmmidb/1.0.0/>`_.

Parameters
----------
Expand Down Expand Up @@ -92,8 +94,10 @@ def data_path(url, path=None, force_update=False, update_path=None, *, verbose=N

@verbose
def load_data(
subject,
runs,
subjects=None,
runs=None,
*,
subject=None,
path=None,
force_update=False,
update_path=None,
Expand All @@ -103,14 +107,19 @@ def load_data(
"""Get paths to local copies of EEGBCI dataset files.

This will fetch data for the EEGBCI dataset :footcite:`SchalkEtAl2004`, which is
also available at PhysioNet :footcite:`GoldbergerEtAl2000`.
also available at PhysioNet :footcite:`GoldbergerEtAl2000`. Metadata, such as the
meaning of event markers may be obtained from the
`PhysioNet documentation page <https://physionet.org/content/eegmmidb/1.0.0/>`_.

Parameters
----------
subject : int
The subject to use. Can be in the range of 1-109 (inclusive).
subjects : int | list of int
The subjects to use. Can be in the range of 1-109 (inclusive).
runs : int | list of int
The runs to use (see Notes for details).
subject : int
This parameter is deprecated and will be removed in mne version 1.9.
Please use ``subjects`` instead.
path : None | path-like
Location of where to look for the EEGBCI data. If ``None``, the environment
variable or config parameter ``MNE_DATASETS_EEGBCI_PATH`` is used. If neither
Expand Down Expand Up @@ -149,20 +158,39 @@ def load_data(
For example, one could do::

>>> from mne.datasets import eegbci
>>> eegbci.load_data(1, [6, 10, 14], "~/datasets") # doctest:+SKIP
>>> eegbci.load_data([1, 2], [6, 10, 14], "~/datasets") # doctest:+SKIP

This would download runs 6, 10, and 14 (hand/foot motor imagery) runs from subject 1
in the EEGBCI dataset to "~/datasets" and prompt the user to store this path in the
config (if it does not already exist).
This would download runs 6, 10, and 14 (hand/foot motor imagery) runs from subjects
1 and 2 in the EEGBCI dataset to "~/datasets" and prompt the user to store this path
in the config (if it does not already exist).

References
----------
.. footbibliography::
"""
import pooch

# XXX: Remove this with mne 1.9 ↓↓↓
# Also remove the subject parameter at that point.
# Also remove the `None` default for subjects and runs params at that point.
if subject is not None:
subjects = subject
warn(
"The ``subject`` parameter is deprecated and will be removed in version "
"1.9. Use the ``subjects`` parameter (note the `s`) to suppress this "
"warning.",
FutureWarning,
)
del subject
if subjects is None or runs is None:
raise ValueError("You must pass the parameters ``subjects`` and ``runs``.")
# ↑↑↑

t0 = time.time()

if not hasattr(subjects, "__iter__"):
subjects = [subjects]

if not hasattr(runs, "__iter__"):
runs = [runs]

Expand Down Expand Up @@ -198,20 +226,22 @@ def load_data(
# fetch the file(s)
data_paths = []
sz = 0
for run in runs:
file_part = f"S{subject:03d}/S{subject:03d}R{run:02d}.edf"
destination = Path(base_path, file_part)
data_paths.append(destination)
if destination.exists():
if force_update:
destination.unlink()
else:
continue
if sz == 0: # log once
logger.info("Downloading EEGBCI data")
fetcher.fetch(file_part)
# update path in config if desired
sz += destination.stat().st_size
for subject in subjects:
for run in runs:
file_part = f"S{subject:03d}/S{subject:03d}R{run:02d}.edf"
destination = Path(base_path, file_part)
data_paths.append(destination)
if destination.exists():
if force_update:
destination.unlink()
else:
continue
if sz == 0: # log once
logger.info("Downloading EEGBCI data")
fetcher.fetch(file_part)
# update path in config if desired
sz += destination.stat().st_size

_do_path_update(path, update_path, config_key, name)
if sz > 0:
_log_time_size(t0, sz)
Expand Down
18 changes: 16 additions & 2 deletions mne/datasets/eegbci/tests/test_eegbci.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,26 @@
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import pytest

from mne.datasets import eegbci


def test_eegbci_download(tmp_path, fake_retrieve):
"""Test Sleep Physionet URL handling."""
for subj in range(4):
fnames = eegbci.load_data(subj + 1, runs=[3], path=tmp_path, update_path=False)
subjects = range(1, 5)
for subj in subjects:
fnames = eegbci.load_data(subj, runs=[3], path=tmp_path, update_path=False)
assert len(fnames) == 1, subj
assert fake_retrieve.call_count == 4

# XXX: remove in version 1.9
with pytest.warns(FutureWarning, match="The ``subject``"):
fnames = eegbci.load_data(
subject=subjects, runs=[3], path=tmp_path, update_path=False
)
assert len(fnames) == 4

# XXX: remove in version 1.9
with pytest.raises(ValueError, match="You must pass the parameters"):
fnames = eegbci.load_data(path=tmp_path, update_path=False)
5 changes: 2 additions & 3 deletions mne/datasets/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -347,9 +347,8 @@ def _download_all_example_data(verbose=True):
sleep_physionet,
)

eegbci.load_data(1, [6, 10, 14], update_path=True)
for subj in range(4):
eegbci.load_data(subj + 1, runs=[3], update_path=True)
eegbci.load_data(subjects=1, runs=[6, 10, 14], update_path=True)
eegbci.load_data(subjects=range(1, 5), runs=[3], update_path=True)
logger.info("[done eegbci]")

sleep_physionet.age.fetch_data(subjects=[0, 1], recording=[1])
Expand Down
2 changes: 1 addition & 1 deletion tutorials/forward/35_eeg_no_mri.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@
# .. note:: See :ref:`plot_montage` to view all the standard EEG montages
# available in MNE-Python.

(raw_fname,) = eegbci.load_data(subject=1, runs=[6])
(raw_fname,) = eegbci.load_data(subjects=1, runs=[6])
raw = mne.io.read_raw_edf(raw_fname, preload=True)

# Clean channel names to be able to use a standard 1005 montage
Expand Down
4 changes: 2 additions & 2 deletions tutorials/preprocessing/40_artifact_correction_ica.py
Original file line number Diff line number Diff line change
Expand Up @@ -532,9 +532,9 @@
raws = list()
icas = list()

for subj in range(4):
for subj in range(1, 5):
# EEGBCI subjects are 1-indexed; run 3 is a left/right hand movement task
fname = mne.datasets.eegbci.load_data(subj + 1, runs=[3])[0]
fname = mne.datasets.eegbci.load_data(subj, runs=[3])[0]
raw = mne.io.read_raw_edf(fname).load_data().resample(50)
# remove trailing `.` from channel names so we can set montage
mne.datasets.eegbci.standardize(raw)
Expand Down
Loading