Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add controlcode to transaction lowering. #840

Merged
merged 1 commit into from
Oct 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
135 changes: 132 additions & 3 deletions compiler/plugins/target/AMD-AIE/iree-amd-aie/IR/AMDAIEOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6,15 +6,14 @@

#include "iree-amd-aie/IR/AMDAIEOps.h"

#include <numeric>
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

unused i think?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is used for std::accumulate.


#include "iree-amd-aie/IR/AMDAIEDialect.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/OpDefinition.h"

#define GET_OP_CLASSES
#include "iree-amd-aie/IR/AMDAIEOps.cpp.inc"

namespace mlir::iree_compiler::AMDAIE {

void AMDAIEDialect::initializeAMDAIEOps() {
Expand All @@ -24,6 +23,38 @@ void AMDAIEDialect::initializeAMDAIEOps() {
>();
}

//===----------------------------------------------------------------------===//
// custom<AsyncTokenType>(type($async_token))
//===----------------------------------------------------------------------===//

/// Parses an optional list of async operands.
static ParseResult parseAsyncTokenType(OpAsmParser &parser, Type &resultType) {
if (succeeded(parser.parseOptionalKeyword("async_source"))) {
resultType = parser.getBuilder().getType<AMDAIE::AsyncSourceTokenType>();
} else if (succeeded(parser.parseOptionalKeyword("async_target"))) {
resultType = parser.getBuilder().getType<AMDAIE::AsyncTargetTokenType>();
} else if (succeeded(parser.parseOptionalKeyword("async"))) {
resultType = parser.getBuilder().getType<AMDAIE::AsyncTokenType>();
}
return success();
}

/// Prints optional async tokens with its leading keyword.
static void printAsyncTokenType(OpAsmPrinter &p, Operation *op,
Type asyncTokenType) {
if (asyncTokenType) {
if (isa<AMDAIE::AsyncSourceTokenType>(asyncTokenType)) {
p << "async_source";
} else if (isa<AMDAIE::AsyncTargetTokenType>(asyncTokenType)) {
p << "async_target";
} else if (isa<AMDAIE::AsyncTokenType>(asyncTokenType)) {
p << "async";
} else {
assert(false && "unsupported async token type");
}
}
}

//===----------------------------------------------------------------------===//
// AMDAIE_BdIdOp
//===----------------------------------------------------------------------===//
Expand Down Expand Up @@ -1026,6 +1057,97 @@ void NpuDmaCpyNdOp::getCanonicalizationPatterns(RewritePatternSet &results,
context);
}

//===----------------------------------------------------------------------===//
// AMDAIE_NpuHalfDmaCpyNdOp
//===----------------------------------------------------------------------===//

// Build a NpuHalfDmaCpyNdOp with mixed static and dynamic entries.
void NpuHalfDmaCpyNdOp::build(OpBuilder &b, OperationState &result,
TypeRange resultTypes, Value connection,
Value input, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides, Value bdId,
Value channel) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides);
build(b, result, resultTypes, connection, input, dynamicOffsets, dynamicSizes,
dynamicStrides, staticOffsets, staticSizes, staticStrides, bdId,
channel);
}

// Build a NpuHalfDmaCpyNdOp with static entries.
void NpuHalfDmaCpyNdOp::build(OpBuilder &b, OperationState &result,
TypeRange resultTypes, Value connection,
Value input, ArrayRef<int64_t> offsets,
ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides, mlir::Value bdId,
Value channel) {
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(llvm::map_range(
offsets,
[&](int64_t v) -> OpFoldResult { return b.getI64IntegerAttr(v); }));
SmallVector<OpFoldResult> sizeValues =
llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult {
return b.getI64IntegerAttr(v);
}));
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(llvm::map_range(
strides,
[&](int64_t v) -> OpFoldResult { return b.getI64IntegerAttr(v); }));
build(b, result, resultTypes, connection, input, offsetValues, sizeValues,
strideValues, bdId, channel);
}

// Build a NpuHalfDmaCpyNdOp with dynamic entries.
void NpuHalfDmaCpyNdOp::build(OpBuilder &b, OperationState &result,
TypeRange resultTypes, Value connection,
Value input, ValueRange offsets, ValueRange sizes,
ValueRange strides, mlir::Value bdId,
Value channel) {
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
build(b, result, resultTypes, connection, input, offsetValues, sizeValues,
strideValues, bdId, channel);
}

std::optional<int64_t> NpuHalfDmaCpyNdOp::getStaticBaseOffset() {
int64_t baseOffset = 0;
SmallVector<OpFoldResult> offsets = getMixedOffsets();
SmallVector<OpFoldResult> strides = getMixedStrides();
for (auto &&[offset, stride] : llvm::zip(offsets, strides)) {
std::optional<int64_t> constantOffset = getConstantIntValue(offset);
std::optional<int64_t> constantStride = getConstantIntValue(stride);
// If offset is zero, we can just continue to the next one. This enables
// the case where the stride is dynamic.
if (constantOffset && constantOffset.value() == 0) continue;
if (constantOffset && constantStride) {
baseOffset += (constantOffset.value() * constantStride.value());
} else {
return std::nullopt;
}
}
return baseOffset;
}

std::optional<int64_t> NpuHalfDmaCpyNdOp::getAccessStaticSize() {
SmallVector<OpFoldResult> sizes = getMixedSizes();
if (sizes.size() == 0) return 0;
std::optional<SmallVector<int64_t>> staticSizes = getConstantIntValues(sizes);
if (!staticSizes) return std::nullopt;
return std::accumulate(staticSizes->begin(), staticSizes->end(), 1,
std::multiplies<>());
}

bool NpuHalfDmaCpyNdOp::hasDmaWaitOpUser() {
return llvm::any_of((*this)->getUsers(),
[](auto userOp) { return isa<NpuDmaWaitOp>(userOp); });
}

//===----------------------------------------------------------------------===//
// AMDAIE_NpuCircularDmaCpyNdOp
//===----------------------------------------------------------------------===//
Expand Down Expand Up @@ -1254,3 +1376,10 @@ LogicalResult WorkgroupOp::verify() {
return success();
}
} // namespace mlir::iree_compiler::AMDAIE

//===----------------------------------------------------------------------===//
// TableGen definitions (intentionally last)
//===----------------------------------------------------------------------===//

#define GET_OP_CLASSES
#include "iree-amd-aie/IR/AMDAIEOps.cpp.inc"
Loading
Loading