Skip to content

Commit

Permalink
LLM: add rwkv5 eagle GPU HF example (intel-analytics#10122)
Browse files Browse the repository at this point in the history
* LLM: add rwkv5 eagle example

* fix

* fix link
  • Loading branch information
JinBridger authored Feb 7, 2024
1 parent 34f0957 commit 0d07d34
Show file tree
Hide file tree
Showing 4 changed files with 220 additions and 0 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -182,6 +182,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Phixtral | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phixtral) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phixtral) |
| InternLM2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/internlm2) |
| RWKV4 | | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/rwkv4) |
| RWKV5 | | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
| Bark | [link](python/llm/example/CPU/PyTorch-Models/Model/bark) | [link](python/llm/example/GPU/PyTorch-Models/Model/bark) |
| SpeechT5 | | [link](python/llm/example/GPU/PyTorch-Models/Model/speech-t5) |

Expand Down
1 change: 1 addition & 0 deletions python/llm/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Phixtral | [link](example/CPU/HF-Transformers-AutoModels/Model/phixtral) | [link](example/GPU/HF-Transformers-AutoModels/Model/phixtral) |
| InternLM2 | [link](example/CPU/HF-Transformers-AutoModels/Model/internlm2) | [link](example/GPU/HF-Transformers-AutoModels/Model/internlm2) |
| RWKV4 | | [link](example/GPU/HF-Transformers-AutoModels/Model/rwkv4) |
| RWKV5 | | [link](example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
| Bark | [link](example/CPU/PyTorch-Models/Model/bark) | [link](example/GPU/PyTorch-Models/Model/bark) |
| SpeechT5 | | [link](example/GPU/PyTorch-Models/Model/speech-t5) |

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
# RWKV5

In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on RWKV5 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [RWKV/HF_v5-Eagle-7B](https://huggingface.co/RWKV/HF_v5-Eagle-7B) as a reference RWKV5 model.

## 0. Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

## Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a RWKV5 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.

### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
```
#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
```

### 2. Configures OneAPI environment variables
#### 2.1 Configurations for Linux
```bash
source /opt/intel/oneapi/setvars.sh
```
#### 2.2 Configurations for Windows
```cmd
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
```
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>

<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>

```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```

</details>

<details>

<summary>For Intel Data Center GPU Max Series</summary>

```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
#### 3.2 Configurations for Windows
<details>

<summary>For Intel iGPU</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```

</details>

<details>

<summary>For Intel Arc™ A300-Series or Pro A60</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
```

</details>

<details>

<summary>For other Intel dGPU Series</summary>

There is no need to set further environment variables.

</details>

> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the RWKV5 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'RWKV/HF_v5-Eagle-7B'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

#### Sample Output
#### [RWKV/HF_v5-Eagle-7B](https://huggingface.co/RWKV/HF_v5-Eagle-7B)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
User: hi
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
User: AI是什么?
Assistant:
-------------------- Output --------------------
User: hi
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
User: AI是什么?
Assistant: AI是人工智能的缩写,是指通过机器学习、深度学习、神经网络等技术,
```

```log
Inference time: xxxx s
-------------------- Prompt --------------------
User: hi
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
User: What is AI?
Assistant:
-------------------- Output --------------------
User: hi
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
User: What is AI?
Assistant: AI (Artificial Intelligence) is a branch of computer science that deals with developing intelligent machines that can think and act like humans. It involves developing algorithms and techniques
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse
import numpy as np

from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer

# you could tune the prompt based on your own model,
# here the prompt tuning is adpated from https://huggingface.co/RWKV/HF_v5-Eagle-7B
def generate_prompt(instruction):
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
return f"""User: hi
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
User: {instruction}
Assistant:"""


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for RWKV5 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="RWKV/HF_v5-Eagle-7B",
help='The huggingface repo id for the RWKV5 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
#
# Please note that for RWKV5 models, `optimize_model` is required to set as True
#
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True)
model = model.to('xpu')

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)

# Generate predicted tokens
with torch.inference_mode():
prompt = generate_prompt(instruction=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)

# start inference
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)

0 comments on commit 0d07d34

Please sign in to comment.