Skip to content

Commit

Permalink
add gemma example (intel-analytics#10224)
Browse files Browse the repository at this point in the history
* add gemma gpu example

* Update README.md

* add cpu example

* Update README.md

* Update README.md

* Update generate.py

* Update generate.py
  • Loading branch information
qiuxin2012 authored Feb 23, 2024
1 parent 99896fa commit 1dce084
Show file tree
Hide file tree
Showing 4 changed files with 427 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
# Gemma
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Google Gemma models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [google/gemma-7b-it ](https://huggingface.co/google/gemma-7b-it) and [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) as reference Gemma models.

## Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

**Important: According to Gemma's requirement, please make sure you have installed `transformers==4.38.0` to run the example.**

## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Gemma model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).

After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu

# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.0 or newer.
pip install transformers==4.38.0
```

#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu

# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.0 or newer.
pip install transformers==4.38.0
```

### 2. Configures OneAPI environment variables
#### 2.1 Configurations for Linux
```bash
source /opt/intel/oneapi/setvars.sh
```

#### 2.2 Configurations for Windows
```cmd
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
```
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>

<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>

```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```

</details>

<details>

<summary>For Intel Data Center GPU Max Series</summary>

```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
#### 3.2 Configurations for Windows
<details>

<summary>For Intel iGPU</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```

</details>

<details>

<summary>For Intel Arc™ A300-Series or Pro A60</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
```

</details>

<details>

<summary>For other Intel dGPU Series</summary>

There is no need to set further environment variables.

</details>

> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```bash
python ./generate.py --prompt 'What is AI?'
```

In the example, several arguments can be passed to satisfy your requirements:

- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Gemma model (e.g. `google/gemma-7b-it` and `google/gemma-2b-it`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'google/gemma-7b-it'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

#### 2.3 Sample Output
#### [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it)
```log
Inference time: xxxx s
-------------------- Output --------------------
user
What is AI?
model
**Artificial Intelligence (AI)** is a field of computer science that involves the creation of intelligent machines capable of performing tasks typically requiring human intelligence, such as learning,
```

#### [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it)
```log
Inference time: xxxx s
-------------------- Output --------------------
user
What is AI?
model
**Artificial intelligence (AI)** is the simulation of human cognitive functions, such as learning, reasoning, and problem-solving, by machines. AI systems are designed
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse

from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer

# The instruction-tuned models use a chat template that must be adhered to for conversational use.
# see https://huggingface.co/google/gemma-7b-it#chat-template.
chat = [
{ "role": "user", "content": "What is AI?" },
]

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Gemma model')
parser.add_argument('--repo-id-or-model-path', type=str, default="google/gemma-7b-it",
help='The huggingface repo id for the Gemma (e.g. `google/gemma-7b-it` and `google/gemma-7b-it`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True,
use_cache=True)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

# Generate predicted tokens
with torch.inference_mode():
chat[0]['content'] = args.prompt
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer.encode(prompt, return_tensors="pt")

# start inference
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Output', '-'*20)
print(output_str)
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
# Gemma
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Google Gemma models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [google/gemma-7b-it ](https://huggingface.co/google/gemma-7b-it) and [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) as reference Gemma models.

## Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

**Important: According to Gemma's requirement, please make sure you have installed `transformers==4.38.0` to run the example.**

## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Gemma model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).

After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu

# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.0 or newer.
pip install transformers==4.38.0
```

#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu

# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.0 or newer.
pip install transformers==4.38.0
```

### 2. Configures OneAPI environment variables
#### 2.1 Configurations for Linux
```bash
source /opt/intel/oneapi/setvars.sh
```

#### 2.2 Configurations for Windows
```cmd
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
```
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>

<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>

```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```

</details>

<details>

<summary>For Intel Data Center GPU Max Series</summary>

```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
#### 3.2 Configurations for Windows
<details>

<summary>For Intel iGPU</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```

</details>

<details>

<summary>For Intel Arc™ A300-Series or Pro A60</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
```

</details>

<details>

<summary>For other Intel dGPU Series</summary>

There is no need to set further environment variables.

</details>

> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```bash
python ./generate.py --prompt 'What is AI?'
```

In the example, several arguments can be passed to satisfy your requirements:

- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Gemma model (e.g. `google/gemma-7b-it` and `google/gemma-2b-it`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'google/gemma-7b-it'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

#### 2.3 Sample Output
#### [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it)
```log
Inference time: xxxx s
-------------------- Output --------------------
user
What is AI?
model
**Artificial Intelligence (AI)** is a field of computer science that involves the creation of intelligent machines capable of performing tasks typically requiring human intelligence, such as learning,
```

#### [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it)
```log
Inference time: xxxx s
-------------------- Output --------------------
user
What is AI?
model
**Artificial intelligence (AI)** is the simulation of human cognitive functions, such as learning, reasoning, and problem-solving, by machines. AI systems are designed
```
Loading

0 comments on commit 1dce084

Please sign in to comment.