Skip to content

Commit

Permalink
LLM: fix the issue that may generate blank html (intel-analytics#9650)
Browse files Browse the repository at this point in the history
* LLM: fix the issue that may generate blank html

* reslove some comments
  • Loading branch information
WeiguangHan authored Dec 11, 2023
1 parent 4a04f03 commit fc19839
Showing 1 changed file with 28 additions and 13 deletions.
41 changes: 28 additions & 13 deletions python/llm/test/benchmark/csv_to_html.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,17 +22,20 @@
import pandas as pd

def highlight_vals(val, max=3.0):
if val > max:
return 'background-color: %s' % 'green'
elif val < -max:
return 'background-color: %s' % 'red'
if isinstance(val, float):
if val > max:
return 'background-color: %s' % 'green'
elif val <= -max:
return 'background-color: %s' % 'red'
else:
return ''

def main():
parser = argparse.ArgumentParser(description="convert .csv file to .html file")
parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
help="The directory which stores the .csv file", default="/mnt/disk1/nightly_perf/")
help="The directory which stores the .csv file", default="/mnt/disk1/nightly_perf_gpu/")
parser.add_argument("-t", "--threshold", type=float, dest="threshold",
help="the threshold of highlight values", default=3.0)
args = parser.parse_args()

csv_files = []
Expand All @@ -42,7 +45,10 @@ def main():
csv_files.append(file_path)
csv_files.sort(reverse=True)

highlight_threshold=args.threshold

latest_csv = pd.read_csv(csv_files[0], index_col=0)
daily_html=csv_files[0].split(".")[0]+".html"

if len(csv_files)>1:
previous_csv = pd.read_csv(csv_files[1], index_col=0)
Expand All @@ -62,6 +68,8 @@ def main():
latest_1st_token_latency=latest_csv_row[latency_1st_token]
latest_2_avg_latency=latest_csv_row[latency_2_avg]

in_previous_flag=False

for previous_csv_ind,previous_csv_row in previous_csv.iterrows():

previous_csv_model=previous_csv_row['model'].strip()
Expand All @@ -75,21 +83,28 @@ def main():
diff1[latest_csv_ind]=round((previous_1st_token_latency-latest_1st_token_latency)*100/previous_1st_token_latency,2)
last2[latest_csv_ind]=previous_2_avg_latency
diff2[latest_csv_ind]=round((previous_2_avg_latency-latest_2_avg_latency)*100/previous_2_avg_latency,2)
in_previous_flag=True

if not in_previous_flag:
last1[latest_csv_ind]=pd.NA
diff1[latest_csv_ind]=pd.NA
last2[latest_csv_ind]=pd.NA
diff2[latest_csv_ind]=pd.NA

latest_csv.insert(loc=3,column='last1',value=last1)
latest_csv.insert(loc=4,column='diff1(%)',value=diff1)
latest_csv.insert(loc=5,column='last2',value=last2)
latest_csv.insert(loc=6,column='diff2(%)',value=diff2)

daily_html=csv_files[0].split(".")[0]+".html"

subset=['diff1(%)','diff2(%)']
columns={'1st token avg latency (ms)': '{:.2f}', '2+ avg latency (ms/token)': '{:.2f}', 'last1': '{:.2f}', 'diff1(%)': '{:.2f}',
'last2': '{:.2f}', 'diff2(%)': '{:.2f}', 'encoder time (ms)': '{:.2f}'}
subset=['diff1(%)','diff2(%)']
columns={'1st token avg latency (ms)': '{:.2f}', '2+ avg latency (ms/token)': '{:.2f}', 'last1': '{:.2f}', 'diff1(%)': '{:.2f}',
'last2': '{:.2f}', 'diff2(%)': '{:.2f}', 'encoder time (ms)': '{:.2f}', 'peak mem (GB)': '{:.2f}'}

with open(daily_html, 'w') as f:
f.write(latest_csv.style.format(columns).applymap(highlight_vals, subset)
.set_table_attributes("border=1").render())
with open(daily_html, 'w') as f:
f.write(latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=highlight_threshold), subset)
.set_table_attributes("border=1").render())
else:
latest_csv.to_html(daily_html)

if __name__ == "__main__":
sys.exit(main())

0 comments on commit fc19839

Please sign in to comment.