Implementation of POET for pose estimation
Dowload the COCO Dataset and create the folder structure as mentioned below.
+ data
+ annotations
- 1.xml
_ 2.xml
.
.
+ train2017
- 1.jpg
- 2.jpg
.
.
Once you have downloaded the dataset, start training ->
python -m torch.distributed.launch --nproc_per_node=<number-of-gpus> --use_env main.py --coco_path ./data/ --batch_size <batch-size>
I trained using 2 Tesla-V100 with a batch size of 6.
python -m torch.distributed.launch --nproc_per_node=2 --use_env main.py --coco_path ./data/ --batch_size 6
python -m torch.distributed.launch --nproc_per_node=2 --use_env main.py --coco_path ./data/ --batch_size <batch-size> --resume ./snapshots/model.pth
python inference.py
Evaluation script
This project is licensed under the Apache License