Skip to content

samiranand1990/gcp-mlops-life-cycle

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Model Development and Productionization

|-- Project Organization
|  |               <- Cookiecutter `https://cookiecutter.readthedocs.io/en/stable/`
|-- Data Version Control
|  |               <- DVC `https://dvc.org/`
|-- CI+CD - Github
|-- Model Productionization/Deployment
|  |-- UI                                             <- Flask
|  |-- Scalability and high availability              <- k8
|-- FeedBack and Retrain 

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io

Project based on the cookiecutter data science project template. #cookiecutterdatascience

1 . What to do if code base is more than 500mb?
2 . Deploy uing ci-cd to aws/azure/gcp instance.

-------------Deploy in GCP------------

1. Login to github.
2. Go to marketplace.
3. Search for google cloud build.
4. Authorize it
5. Open gcp console
6. search for cloud build >> trigger
7. gcloud projects add-iam-policy-binding hft-demo-v1 --member=serviceAccount:1009805620509@cloudbuild.gserviceaccount.com --role=roles/container.developer
8. k8s deploy
9. k8s failing due to permission issue and time out
10. Configure terraform for k8s creation: https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs/guides/getting-started

Ml flow execute--

mlflow server --backend-store-uri sqlite:///mlflow.db --default-artifact-root ./artifact --host 0.0.0.0 -p 123

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published