forked from GitWyd/RM_Retinas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main copy.py
609 lines (463 loc) · 24.1 KB
/
main copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
import os
from math import sqrt
import numpy as np
import cv2
import dt_apriltags
import pandas as pd
######################
## GLOBAL CONSTANTS ##
######################
print(pd.__version__)
# Define world tags and their locations in world frame
WORLD_TAGS = {
575: np.array([0, 0, 0]),
576: None,
577: None,
578: np.array([0.3, 0, 0]),
579: None,
580: None,
581: np.array([0, 0.3, 0]),
582: None,
583: None,
584: None,
585: None,
586: np.array([0.3, 0.3, 0])
}
world_tag_size = 0.055 # 55mm
april_tag_size = 0.017
# Tag Corner Coordinates in Tag Frame
obj_pts_square = np.array([
[-april_tag_size/2, -april_tag_size/2, 0],
[ april_tag_size/2, -april_tag_size/2, 0],
[-april_tag_size/2, april_tag_size/2, 0],
[ april_tag_size/2, april_tag_size/2, 0],
])
columns = ['link_num', 'link_tag_id', 'centroid_x', 'centroid_y', 'centroid_z',
'upper_tip_x', 'upper_tip_y', 'upper_tip_z',
'bottom_tip_x', 'bottom_tip_y', 'bottom_tip_z']
#############
## CLASSES ##
#############
class Tag():
def __init__(self, frame, tag, R_camera_to_world, t_camera_to_world, tag_size):
# self.mtx = mtx
# self.dist = dist
self.frame = frame
self.tag = tag
self.tag_id = tag.tag_id
self.R_camera_to_world = R_camera_to_world
self.t_camera_to_world = t_camera_to_world
self.tag_size = tag_size
self.tf_tag_corners = np.array([
[-tag_size/2, -tag_size/2, 0],
[ tag_size/2, -tag_size/2, 0],
[ tag_size/2, tag_size/2, 0],
[-tag_size/2, tag_size/2, 0]
])
self.cf_linkbody_pts = np.array([])
# related to link
#frame, tag, R_avg_camera_to_world, t_avg_camera_to_world, tag_size
# def draw_original_tag_boundary(self):
# # Draw detected corners without transformation for comparison
# corners = self.tag.corners.astype(int)
# cv2.polylines(self.frame, [corners], True, (0,255,0), 2)
# return None
def draw_tag_boundary(self):
# Tag Frame to Camera Frame Transformation for Corners
cf_tag_corners, _ = cv2.projectPoints(self.tf_tag_corners, self.tag.pose_R, self.tag.pose_t, mtx, dist)
cf_tag_corners = cf_tag_corners.reshape(-1, 2).astype(int)
# Draw the tag boundary in green
for i in range(4):
cv2.line(frame, tuple(cf_tag_corners[i]), tuple(cf_tag_corners[(i+1)%4]), (255, 0, 0), 2)
return cf_tag_corners # tag corners in camera frame
def draw_axes(self):
# Define the 3D points for XYZ axes
axis_length = 0.03
obj_pts_axes = np.array([
[0, 0, 0],
[axis_length, 0, 0],
[0, axis_length, 0],
[0, 0, axis_length]
])
# Tag Frame to Camera Frame Transformation for Axes
img_pts_axes, _ = cv2.projectPoints(obj_pts_axes, self.tag.pose_R, self.tag.pose_t, mtx, dist)
img_pts_axes = img_pts_axes.reshape(-1, 2).astype(int)
# Draw the transformed XYZ axes on to the Camera Frame
colors = [(0, 0, 255), (0, 255, 0), (255, 0, 0)]
for i in range(1, 4):
cv2.line(frame, tuple(img_pts_axes[0]), tuple(img_pts_axes[i]), colors[i-1], 2)
return None
# def draw_centroid_axes(self, link_tag_id):
# print(link_tag_id)
# # print(type(tag.tag_id), tag.tag_id)
# print(type(link_tag_id), link_tag_id)
# axis_length = 0.05
# if link_tag_id is not None:
# # if link frame id is from 0 to 5 -> UPPER
# if (0 <= link_tag_id <= 5):
# tf_axes_pts = np.array([
# [0,0,0],
# [axis_length, 0, 0],
# [0, axis_length, 0],
# [0, 0, axis_length]
# ])+ [0.047, 0, 0.016]
# # if link frame id is from 6 to 11 -> BOTTOM
# elif(6 <= link_tag_id <= 11):
# tf_axes_pts = np.array([
# [0,0,0],
# [axis_length, 0, 0],
# [0, axis_length, 0],
# [0, 0, axis_length]
# ]) + [-0.047, 0, 0.016]
# # Tag Frame to Camera Frame Transformation for Axes
# cf_axes_pts, _ = cv2.projectPoints(tf_axes_pts, self.tag.pose_R, self.tag.pose_t, mtx, dist)
# cf_axes_pts = cf_axes_pts.reshape(-1, 2).astype(int)
# # Draw the transformed XYZ axes on to the Camera Frame
# colors = [(0, 0, 255), (0, 255, 0), (255, 0, 0)]
# for i in range(1, 4):
# cv2.line(self.frame, tuple(cf_axes_pts[0]), tuple(cf_axes_pts[i]), colors[i-1], 2)
# return None
def calculate_linkbody(self, link_tag_id, servo_extension = 0):
# if link frame id is from 0 to 5 -> UPPER
if (0 <= link_tag_id <= 5):
linkbody_pts = np.array([
[0.047, 0, 0.016], # centroid
[-(0.085+servo_extension), 0, 0.016] # upper tip (servo unextended)
])
# if link frame id is from 6 to 11 -> BOTTOM
elif(6 <= link_tag_id <= 11):
linkbody_pts = np.array([
[-0.047, 0, 0.016], # centroid
[0.085+servo_extension, 0, 0.016] # bottom tip (servo unextended)
])
self.cf_linkbody_pts, _ = cv2.projectPoints(linkbody_pts, self.tag.pose_R, self.tag.pose_t, mtx, dist)
self.cf_linkbody_pts = self.cf_linkbody_pts.reshape(-1, 2).astype(int)
return None
def draw_linkbody(self, link_tag_id, servo_extension = 0):
print("Shape of cf_linkbody_pts:", self.cf_linkbody_pts.shape)
for pt in self.cf_linkbody_pts:
neon_green = (57, 255, 20)
# Draw the transformed centroid and tips! as a circle
cv2.circle(frame, tuple(pt), 5, neon_green, -1)
return None
def compute_tranformation(self):
# initialization
R_tag_to_world = None
t_tag_to_world = None
if self.R_camera_to_world is not None and self.t_camera_to_world is not None:
# Will obtain tag_to_world transformation
# To compute the tag's pose in world frame
R_tag_to_world = np.dot(self.R_camera_to_world, self.tag.pose_R)
t_tag_to_world = np.dot(self.R_camera_to_world, self.tag.pose_t) + self.t_camera_to_world
print("R_tag_to_world:", R_tag_to_world)
print("t_tag_to_world:", t_tag_to_world)
if np.any(np.isnan(R_tag_to_world)) or np.any(np.isnan(t_tag_to_world)):
print("Warning: Transformation matrices contain NaN values!")
return R_tag_to_world, t_tag_to_world
def project_to_world(self, R_tag_to_world, t_tag_to_world, cf_tag_corners, cf_linkbody_pts = None, link_tag_id = None, servo_extension = 0):
centroid_world = 0
tip_world = 0
# Only execute linkbody related code if both camera_linkbody_pts and link_tag_id are provided
if cf_linkbody_pts is not None and link_tag_id is not None:
# if link frame id is from 0 to 5 -> UPPER
if (0 <= link_tag_id <= 5):
linkbody_pts = np.array([
[0.047, 0, 0.016], # centroid
[-(0.085+servo_extension), 0, 0.016] # upper tip (servo unextended)
])
# if link frame id is from 6 to 11 -> BOTTOM
elif(6 <= link_tag_id <= 11):
linkbody_pts = np.array([
[-0.047, 0, 0.016], # centroid
[0.085+servo_extension, 0, 0.016] # bottom tip (servo unextended)
])
linkbody_pts_world = np.dot(R_tag_to_world, linkbody_pts.T).T + t_tag_to_world.T
centroid_world = linkbody_pts_world[0]
tip_world = linkbody_pts_world[1]
centroid_str = f"Centroid: X: {centroid_world[0]*100:.1f}, Y: {centroid_world[1]*100:.1f}, Z: {centroid_world[2]*100:.1f}"
tip_str = f"Tip: X: {tip_world[0]*100:.1f}, Y: {tip_world[1]*100:.1f}, Z: {tip_world[2]*100:.1f}"
# centroid and tip points in camera frame
cf_centroid = cf_linkbody_pts[0]
cf_tip = cf_linkbody_pts[1]
# # display world coordinates on the camera frame cordinates (since our view is in camera frame)
# offset_y = 20 # vertical offset for text placement
# cv2.putText(self.frame, centroid_str, (cf_centroid[0] - 60, cf_centroid[1] - offset_y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 255), 2, cv2.LINE_AA)
# cv2.putText(self.frame, tip_str, (cf_tip[0] - 60, cf_tip[1] - offset_y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 255), 2, cv2.LINE_AA)
# Set a static offset for the text, e.g., 10 pixels above the tag center.
cf_tag_center = np.mean(cf_tag_corners, axis=0).astype(int)
text_offset = 10
############ DISPLAY WORLD POS OF THE TAGS ################### CAN BE OFF FOR NOW
#Display the pose estimation coordinates relative to the world frame ABOVE the tag
if self.tag_id == 575:
world_pos_str = f"X: {(t_tag_to_world[0][0])*100:.1f}, Y: {(t_tag_to_world[1][0])*100:.1f}, Z: {(t_tag_to_world[2][0])*100:.1f}"
cv2.putText(frame, world_pos_str, (cf_tag_center[0] - 60, cf_tag_center[1] - text_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 255), 2, cv2.LINE_AA)
#####################################################
# HAVE TO ADD PART FOR TAG TO WORLD FOR THE CENTROID AND TIP POINTS AS WELL ALSO FOR X - AXES####
#####################################################
return centroid_world, tip_world # will be adding in the the link instance
class LinkBody:
def __init__(self, frame):
self.tags = {}
self.frame = frame
# self.tags[link_tag_id][centroid] = #centroid value
# initialize dataframe to collect link centroid, tip, axes data
self.data = pd.DataFrame(columns=columns)
def update_data(self, link_num, link_tag_id, centroid, tip):
# determine tip type
axis_length = 0.05
if 0 <= link_tag_id <= 5:
tip_type = 'upper_tip'
tf_axes_pts = np.array([
[0,0,0],
[axis_length, 0, 0],
[0, axis_length, 0],
[0, 0, axis_length]
])+ [0.047, 0, 0.016]
else:
tip_type = 'bottom_tip'
tf_axes_pts = np.array([
[0,0,0],
[axis_length, 0, 0],
[0, axis_length, 0],
[0, 0, axis_length]
]) + [-0.047, 0, 0.016]
# Tag Frame to Camera Frame Transformation for Axes
cf_axes_pts, _ = cv2.projectPoints(tf_axes_pts, self.tags[link_tag_id].tag.pose_R, self.tags[link_tag_id].tag.pose_t, mtx, dist)
cf_axes_pts = cf_axes_pts.reshape(-1, 2).astype(int)
new_data = {
'link_num': link_num,
'link_tag_id': link_tag_id,
'centroid_x': centroid[0], 'centroid_y': centroid[1], 'centroid_z': centroid[2],
tip_type+'_x': tip[0], tip_type+'_y': tip[1], tip_type+'_z': tip[2],
'cf_axes_pts_o': cf_axes_pts[0], 'cf_axes_pts_x': cf_axes_pts[1], 'cf_axes_pts_y': cf_axes_pts[2], 'cf_axes_pts_z': cf_axes_pts[3]
}
# print(type(self.data))
print(self.data)
# self.data = self.data.append(new_data, ignore_index = True)
self.data = pd.concat([self.data, pd.DataFrame([new_data])], ignore_index=True)
def compute_mean(self):
unique_link_nums = self.data['link_num'].unique()
for link_num in unique_link_nums:
filtered_data = self.data[self.data['link_num'] == link_num]
mean_values = {
'link_num' : link_num,
'link_tag_id' : 'Mean',
'centroid_x': filtered_data['centroid_x'].mean(),
'centroid_y': filtered_data['centroid_y'].mean(),
'centroid_z': filtered_data['centroid_z'].mean(),
'upper_tip_x': filtered_data['upper_tip_x'].mean(),
'upper_tip_y': filtered_data['upper_tip_y'].mean(),
'upper_tip_z': filtered_data['upper_tip_z'].mean(),
'bottom_tip_x': filtered_data['bottom_tip_x'].mean(),
'bottom_tip_y': filtered_data['bottom_tip_y'].mean(),
'bottom_tip_z': filtered_data['bottom_tip_z'].mean(),
'cf_axes_pts_o': filtered_data['cf_axes_pts_o'].mean(),
'cf_axes_pts_x': filtered_data['cf_axes_pts_x'].mean(),
'cf_axes_pts_y': filtered_data['cf_axes_pts_y'].mean(),
'cf_axes_pts_z': filtered_data['cf_axes_pts_z'].mean()
}
# self.data = self.data.append(mean_values, ignore_index = True)
self.data = pd.concat([self.data, pd.DataFrame([mean_values])], ignore_index=True)
return None
def append(self, tag, link_tag_id):
# link_tag_id is from 1 to 12
# link_id : 14
# tag_id : link_id*12 + 11
if link_tag_id not in self.tags:
self.tags[link_tag_id] = tag
return None
def get_link_tag_id(self, link_tag_id):
self.tags.get(link_tag_id, {})
def display_linkbody(self, R_world_to_camera, t_world_to_camera):
# TO DISPLAY THE MEAN LINKBODY PTS IN THE CF
mean_row = self.data[self.data['link_tag_id'] == "Mean"].iloc[0]
wf_centroid = (mean_row['centroid_x'], mean_row['centroid_y'], mean_row['centroid_z'])
wf_upper_tip = (mean_row['upper_tip_x'], mean_row['upper_tip_y'], mean_row['upper_tip_z'])
wf_bottom_tip = (mean_row['bottom_tip_x'], mean_row['bottom_tip_y'], mean_row['bottom_tip_z'])
# TO DISPLAY AXES IN CF
cf_axes_pts = (mean_row['cf_axes_pts_o'], mean_row['cf_axes_pts_x'], mean_row['cf_axes_pts_y'], mean_row['cf_axes_pts_z'])
print("CF_AXES_PTS: ", cf_axes_pts)
# Draw the transformed XYZ axes on to the Camera Frame
colors = [(0, 0, 255), (0, 255, 0), (255, 0, 0)]
for i in range(1, 4):
start_point = tuple(map(int, cf_axes_pts[0]))
end_point = tuple(map(int, cf_axes_pts[i]))
cv2.line(frame, start_point, end_point, colors[i-1], 2)
wf_linkbody_mean = np.array([wf_centroid, wf_upper_tip, wf_bottom_tip], dtype = np.float32)
# cf_linkbody_mean = np.dot(R_world_to_camera, a) + t_world_to_camera
cf_linkbody_mean, _ = cv2.projectPoints(wf_linkbody_mean, R_world_to_camera, t_world_to_camera, mtx, dist)
print(f"cf_linkbody_mean{cf_linkbody_mean}")
# cf_linkbody_mean = cf_linkbody_mean.reshape(-1, 2).astype(int)
cf_linkbody_reshaped = cf_linkbody_mean.reshape(-1, 2)
mask = ~np.isnan(cf_linkbody_reshaped).any(axis=1)
cf_linkbody_reshaped[mask] = cf_linkbody_reshaped[mask].astype(int) # convert to integer
print(f"cf_linkbody_mean{cf_linkbody_reshaped}")
centroid_str = f"Centroid: X: {wf_centroid[0]*100:.1f}, Y: {wf_centroid[1]*100:.1f}, Z: {wf_centroid[2]*100:.1f}"
upper_tip_str = f"Upper Tip: X: {wf_upper_tip[0]*100:.1f}, Y: {wf_upper_tip[1]*100:.1f}, Z: {wf_upper_tip[2]*100:.1f}"
bottom_tip_str = f"Bottom Tip: X: {wf_bottom_tip[0]*100:.1f}, Y: {wf_bottom_tip[1]*100:.1f}, Z: {wf_bottom_tip[2]*100:.1f}"
neon_green = (57, 255, 20)
counter = 0
for pt in cf_linkbody_reshaped[mask]:
# print(pt)
if not np.isnan(np.array(pt)).any(): # skip
# print(tuple(pt))
# cv2.circle(self.frame, tuple(pt), 5, neon_green, -1)
cv2.circle(frame, center=(int(pt[0]), int(pt[1])), radius=5, color=neon_green, thickness=-1)
# display world coordinates on the camera frame cordinates (since our view is in camera frame)
offset_y = 20 # vertical offset for text placement
if counter == 0:
cv2.putText(frame, centroid_str, (int(pt[0]) - 60, int(pt[1]) - offset_y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 255), 2, cv2.LINE_AA)
elif counter == 1:
cv2.putText(frame, upper_tip_str, (int(pt[0]) - 60, int(pt[1]) - offset_y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 255), 2, cv2.LINE_AA)
elif counter == 2:
cv2.putText(frame, bottom_tip_str, (int(pt[0]) - 60, int(pt[1]) - offset_y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 255), 2, cv2.LINE_AA)
counter +=1
####################
## INITIALIZATION ##
####################
# Video capture setup
display_width = 1920
display_height = 1080
cap = cv2.VideoCapture(4)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 3840) # Width
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 2160) # Height
# Loading calibration results
calib_file = os.path.join("particleTrussServer/RM_Retinas/assets/calibration", "calibration_data.npz")
# The path when pwd is RM_Retinas
# calib_file = os.path.join("assets/calibration", 'calibration_data.npz')
if os.path.exists(calib_file):
with np.load(calib_file) as X:
mtx, dist, rvecs, tvecs = X['mtx'], X['dist'], X['rvecs'], X['tvecs']
print(f"mtx: {mtx}")
print(f"dist: {dist}")
print(f"rvecs: {rvecs}")
print(f"tvecs: {tvecs}")
else:
print("Calibration data does not exist. Please run calibration.py first")
exit()
# Extract camera_params, which are focal lengths and optical center each in x, y direction
fx = mtx[0,0]
fy = mtx[1,1]
cx = mtx[0,2]
cy = mtx[1,2]
camera_params = (fx, fy, cx, cy)
# Create an AprilTag detector
detector = dt_apriltags.Detector(searchpath=['apriltags'],
families='tag36h11',
nthreads=1,
quad_decimate=1.0,
quad_sigma=0.0,
refine_edges=1,
decode_sharpening=0.25,
debug=0)
# link number and related TagPose instances
# data collection and organization for later compute
# DATA STRUCTURE
# links = { link_num : LinkBody instances for the link_num }
# these instances have related tags as values{ 'link_num'.tags[link_frame_tag_id] }
# 17.tags[value between 1 ~ 12] returns a dictionary for that tag
# 17.tags[1] = {
# 'pose_t': tag.pose_t,
# 'pose_R': tag.pose_R,
# 'center': tag.center
# }
#######################
## UTILITY FUNCTIONS ##
#######################
def get_camera_to_world_transform(tag):
# Invert the transformation, since we need camera -> world
R_inv = np.transpose(tag.pose_R)
t_inv = -np.dot(R_inv, tag.pose_t)
return R_inv, t_inv
def average_transforms(transforms):
average_R = np.mean([R for R, t in transforms], axis=0)
average_t = np.mean([t for R, t in transforms], axis=0)
return average_R, average_t
def validate_world_position(tag, t_tag_to_world, frame, tag_index):
# Extract the tag's estimated position in the world frame
estimated_position = t_tag_to_world.flatten()
# Get the tag's true position from the WORLD_TAGS dictionary
true_position = WORLD_TAGS.get(tag.tag_id)
if true_position is not None:
# Compute the difference between estimated and true position
difference = true_position - estimated_position
error_distance = np.linalg.norm(difference)
display_text = f"Tag {tag.tag_id} Diff: {difference*100} Euclidean Distance: {(error_distance*100):.4f} cm"
vertical_position = 30 + tag_index * 30
position = (frame.shape[1] - 600, vertical_position)
cv2.putText(frame, display_text, position, cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2, cv2.LINE_AA)
return difference
return None
def compute_reprojection_error(tag):
# Reproject the tag corners using the estimated pose
img_pts_reprojected, _ = cv2.projectPoints(obj_pts_square, tag.pose_R, tag.pose_t, mtx, dist)
img_pts_reprojected = img_pts_reprojected.reshape(-1, 2)
# Compute the distance between reprojected corners and detected corners
error = np.linalg.norm(img_pts_reprojected - tag.corners, axis=1)
avg_error = np.mean(error)
return avg_error
while True:
ret, frame = cap.read()
if not ret:
break
links = {}
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Detect AprilTags in the frame
result_world_tags = detector.detect(gray, True, camera_params, world_tag_size)
result_april_tags = detector.detect(gray, True, camera_params, april_tag_size)
R_camera_to_world = None
t_camera_to_world = None
for tag in result_world_tags:
# If the detected tag is the origin (tag ID 575), use its transformation as the world frame
if tag.tag_id == 575:
R_camera_to_world, t_camera_to_world = get_camera_to_world_transform(tag)
R_world_to_camera, t_world_to_camera = tag.pose_R, tag.pose_t
# If we found the world tag, use its transformation for all other tags.
# Otherwise, skip world frame computations for this frame.
if R_camera_to_world is not None and t_camera_to_world is not None:
world_tag_counter = 0
for tag in result_world_tags:
if tag.tag_id in WORLD_TAGS:
detected_world_tag = Tag(frame, tag, R_camera_to_world, t_camera_to_world, world_tag_size)
# t_tag_to_world = draw_pose(frame, tag, R_camera_to_world, t_camera_to_world, world_tag_size)
cf_tag_corners = detected_world_tag.draw_tag_boundary()
detected_world_tag.draw_axes()
R_tag_to_world, t_tag_to_world = detected_world_tag.compute_tranformation()
detected_world_tag.project_to_world(R_tag_to_world, t_tag_to_world, cf_tag_corners)
if tag.tag_id is not None:
validate_world_position(tag, t_tag_to_world, frame, world_tag_counter)
world_tag_counter += 1
for tag in result_april_tags:
if tag.tag_id not in WORLD_TAGS:
link_num = tag.tag_id // 12 # Link Number starts with P0
link_tag_id = tag.tag_id % 12
# logic for storing tag pose data to LinkPose instances
if link_num not in links:
links[link_num] = LinkBody(frame)
# links[link_num].get_link_tag_id(link_tag_id)
detected_tag = Tag(frame, tag, R_camera_to_world, t_camera_to_world, april_tag_size)
links[link_num].append(detected_tag, link_tag_id)
# detected_tag.draw_original_boundary()
cf_tag_corners = detected_tag.draw_tag_boundary()
detected_tag.draw_axes()
# detected_tag.draw_centroid_axes(link_tag_id)
detected_tag.calculate_linkbody(link_tag_id)
# detected_tag.draw_linkbody(link_tag_id)
R_tag_to_world, t_tag_to_world = detected_tag.compute_tranformation()
wf_centroid, wf_tip = detected_tag.project_to_world(R_tag_to_world, t_tag_to_world, cf_tag_corners, detected_tag.cf_linkbody_pts, link_tag_id)
# update data
links[link_num].update_data(link_num, link_tag_id, wf_centroid, wf_tip)
for link_body in links.values():
# first_tag_link_tag_id = next(iter(link_body.tags.keys()))
# first_tag = next(iter(link_body.tags.values()))
# first_tag.draw_centroid_axes(first_tag_link_tag_id)
link_body.compute_mean()
link_body.display_linkbody(R_world_to_camera, t_world_to_camera)
# link_body.compute_axes() # compute x axis from centroid to the tip
# reset dataframe for the next frame -> later u will use this line to collect data
frame_resized = cv2.resize(frame, (display_width, display_height))
cv2.imshow("AprilTags Pose Estimation", frame_resized)
if cv2.waitKey(1) & 0xFF == ord('q'): # Press ESC to exit
break
cap.release()
cv2.destroyAllWindows()