This project reads in ADS-B info as downloadable from ADS-B Exchange,
and renders plane trajectories by using the lat
, long
and postime
fields of the data,
applying a trajectory comparison algorithm to produce distances that a clustering algorithm
consumes for the coloring.
The front-end leverages ES6 features commonly supported by modern browsers, such as fat arrow notation, template literals, class syntax, and for...of notation. The EDwP algorithm is written in C# for faster speed while still retaining the readability of a high-level language. Visual Studio 2017 will be required to compile the bin.
- d3.js
- Newtonsoft Json
- pillow
- psycopg2
- py-wget
- selenium
- sklearn
Script | Description |
---|---|
fixjson.py /fixjson.py2 |
to edit json errors in ADS-B Exchange json files. |
createpostgresql.py |
to create the postgre tables |
raw2perplane.py |
converts raw json into postgresql |
samplepaths.py |
takes given number of paths, output to data_perplane/ . Also saves icao info in icao-db/ |
segmentedpaths.py |
segments paths from data_perplane/ |
vw_simplify.py |
simplifies paths using VW algo, then output to data_simple-segments/ |
makemanifest.py |
Creates a listing of files for use by dbscan.py and C# EDwP. |
edwp.exe |
Applies EDwP to trajectories to create distance matrix, distmatrix.json |
dbscan.py |
Given a distmatrix.json , clusters trajectories into dbscanned.json |
icaodbcombiner.py |
Constructs an icaodb.json for frontend to reference. |
Utilities | Description |
---|---|
combinefiles.py |
Combines all json files in given directory and outputs as json. |
Contribution | Paper |
---|---|
EDwP | S. Ranu et al, Indexing and Matching Trajectories under Inconsistent Sampling Rates, 2015 IEEE International Conference on Data Engineering; p999-1010. |
Lu & Fu tldr | W. Peng, M. O. Ward, E. A. Rundensteiner; Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering, IEEE Symposium on Information Visualization (2004) ref 15. |
Lu & Fu nearest neighbor | S. Y. Lu and K. S. Fu. A sentence-to-sentence clustering procedure for pattern analysis, IEEE Transactions on Systems, Man and Cybernetics, 8:381–389, 1978. |
EDR | L. Chen, M. T. Özsu, V. Oria; Robust and Fast Similarity Search for Moving Object Trajectories, SIGMOD/PODS '05. |
MA | S. Sankararaman et al. Model-driven matching and segmentation of trajectories, SIGSPATIAL'13; p234-243. |
pysklearn | Pedregosa et al. Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830, 2011. |
VW reference | M. Bostock, simplify.js, accessed 2017-12-08 here (2012). |
VW paper | M. Visvalingam, J. D. Whyatt. Line generalisation by repeated elimination of points, Cartographic Journal 1993, 30, 46–51. |
d3 | M. Bostock, V. Ogievetsky, J. Heer. D3 Data-Driven Documents, IEEE Transactions on Visualization and Computer Graphics, Volume 17 Issue 12, December 2011. p2301-2309. |
Plane info | ADSBexchange, http://www.ADSBexchange.com. |