Skip to content

Final project for Information Visualization class, Fall 2017.

Notifications You must be signed in to change notification settings

skairunner/TrajectoryInspector

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Trajectory View

This project reads in ADS-B info as downloadable from ADS-B Exchange, and renders plane trajectories by using the lat, long and postime fields of the data, applying a trajectory comparison algorithm to produce distances that a clustering algorithm consumes for the coloring.

The front-end leverages ES6 features commonly supported by modern browsers, such as fat arrow notation, template literals, class syntax, and for...of notation. The EDwP algorithm is written in C# for faster speed while still retaining the readability of a high-level language. Visual Studio 2017 will be required to compile the bin.

Libraries used:

  • d3.js
  • Newtonsoft Json
  • pillow
  • psycopg2
  • py-wget
  • selenium
  • sklearn

Workflow

Script Description
fixjson.py/fixjson.py2 to edit json errors in ADS-B Exchange json files.
createpostgresql.py to create the postgre tables
raw2perplane.py converts raw json into postgresql
samplepaths.py takes given number of paths, output to data_perplane/. Also saves icao info in icao-db/
segmentedpaths.py segments paths from data_perplane/
vw_simplify.py simplifies paths using VW algo, then output to data_simple-segments/
makemanifest.py Creates a listing of files for use by dbscan.py and C# EDwP.
edwp.exe Applies EDwP to trajectories to create distance matrix, distmatrix.json
dbscan.py Given a distmatrix.json, clusters trajectories into dbscanned.json
icaodbcombiner.py Constructs an icaodb.json for frontend to reference.
Utilities Description
combinefiles.py Combines all json files in given directory and outputs as json.

Works referenced

Contribution Paper
EDwP S. Ranu et al, Indexing and Matching Trajectories under Inconsistent Sampling Rates, 2015 IEEE International Conference on Data Engineering; p999-1010.
Lu & Fu tldr W. Peng, M. O. Ward, E. A. Rundensteiner; Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering, IEEE Symposium on Information Visualization (2004) ref 15.
Lu & Fu nearest neighbor S. Y. Lu and K. S. Fu. A sentence-to-sentence clustering procedure for pattern analysis, IEEE Transactions on Systems, Man and Cybernetics, 8:381–389, 1978.
EDR L. Chen, M. T. Özsu, V. Oria; Robust and Fast Similarity Search for Moving Object Trajectories, SIGMOD/PODS '05.
MA S. Sankararaman et al. Model-driven matching and segmentation of trajectories, SIGSPATIAL'13; p234-243.
pysklearn Pedregosa et al. Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830, 2011.
VW reference M. Bostock, simplify.js, accessed 2017-12-08 here (2012).
VW paper M. Visvalingam, J. D. Whyatt. Line generalisation by repeated elimination of points, Cartographic Journal 1993, 30, 46–51.
d3 M. Bostock, V. Ogievetsky, J. Heer. D3 Data-Driven Documents, IEEE Transactions on Visualization and Computer Graphics, Volume 17 Issue 12, December 2011. p2301-2309.
Plane info ADSBexchange, http://www.ADSBexchange.com.