Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Prompt enhancement example for SDXL with Compel and DIffusers #442

Merged
merged 3 commits into from
Aug 3, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions colabs/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,12 +19,12 @@
| Ultralytics Inference | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://wandb.me/ultralytics-inference) |
| Ray/Tune | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://wandb.me/raytune-colab) |
| 🤗 Diffusers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://wandb.me/diffusers-uncond-colab) |
| 🤗 Diffusers Stable Diffusion XL 1.0 Text-to-Image | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://wandb.me/sdxl-colab) |
| 🧨 Diffusers Stable Diffusion XL 1.0 Text-to-Image | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://wandb.me/sdxl-colab) |
| Controlling and Enhancing Stable Diffusion Prompts using Compel and 🧨 Diffusers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://wandb.me/sdxl-compel-colab) |
| 🧨 Dreambooth-Keras Train | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://wandb.me/db-keras-train) |
| 🧨 Dreambooth-Keras Inference | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://wandb.me/db-keras-inference) |
| Kaolin-Wisp | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://wandb.me/vqad-colab) |


# 🏋🏽‍♂️ W&B Features

| Notebook | Link |
Expand Down
293 changes: 293 additions & 0 deletions colabs/diffusers/sdxl-compel.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,293 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a href=\"https://colab.research.google.com/github/wandb/examples/blob/master/colabs/diffusers/sdxl-compel.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Prompt Weighing and Blending using for SDXL 1.0 using [Compel](https://github.com/damian0815/compel) and [🧨 Diffusers](https://huggingface.co/docs/diffusers)\n",
"\n",
"\n",
"This notebook demonstrates the following:\n",
"- Performing text-conditional image-generations using [🧨 Diffusers](https://huggingface.co/docs/diffusers).\n",
"- Using the Stable Diffusion XL Refiner pipeline to further refine the outputs of the base model.\n",
"- Manage image generation experiments using [Weights & Biases](http://wandb.ai/geekyrakshit).\n",
"- Log the prompts and generated images to [Weigts & Biases](http://wandb.ai/geekyrakshit) for visalization."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Installing the Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install -qq diffusers[\"torch\"] transformers compel wandb"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import wandb\n",
"from diffusers import DiffusionPipeline, EulerDiscreteScheduler\n",
"from compel import Compel, ReturnedEmbeddingsType"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Experiment Management using Weights & Biases\n",
"\n",
"Managing our image generation experiments is crucial for the sake of reproducibility. Hence we sync all the configs of our experiments with our Weights & Biases run. This stores all the configs of the experiments, right from the prompts to the refinement technque and the configuration of the scheduler."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"wandb.init(project=\"stable-diffusion-xl\", entity=\"geekyrakshit\", job_type=\"text-to-image-compel\", save_code=True)\n",
"\n",
"config = wandb.config\n",
"config.stable_diffusion_checkpoint = \"stabilityai/stable-diffusion-xl-base-1.0\"\n",
"config.refiner_checkpoint = \"stabilityai/stable-diffusion-xl-refiner-1.0\"\n",
"config.offload_to_cpu = False\n",
"config.compile_model = False\n",
"config.prompt_1 = \"a cat playing with a ball in the (forest)---------\"\n",
"config.prompt_2 = \"Realistic, highly detailed, cold and bright color grading, 8k.\"\n",
"config.negative_prompt_1 = \"low-quality\"\n",
"config.negative_prompt_2 = \"low-quality\"\n",
"config.seed = 42\n",
"config.use_ensemble_of_experts = False\n",
"config.num_inference_steps = 100\n",
"config.num_refinement_steps = 150\n",
"config.high_noise_fraction = 0.8 # Set explicitly only if config.use_ensemble_of_experts is True\n",
"config.scheduler_kwargs = {\n",
" \"beta_end\": 0.012,\n",
" \"beta_schedule\": \"scaled_linear\", # one of [\"linear\", \"scaled_linear\"]\n",
" \"beta_start\": 0.00085,\n",
" \"interpolation_type\": \"linear\", # one of [\"linear\", \"log_linear\"]\n",
" \"num_train_timesteps\": 1000,\n",
" \"prediction_type\": \"epsilon\", # one of [\"epsilon\", \"sample\", \"v_prediction\"]\n",
" \"steps_offset\": 1,\n",
" \"timestep_spacing\": \"leading\", # one of [\"linspace\", \"leading\"]\n",
" \"trained_betas\": None,\n",
" \"use_karras_sigmas\": False,\n",
"}\n",
"config.prompt_credits = \"\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can make the experiment deterministic based on the seed specified in the experiment configs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if config.seed is not None:\n",
" generator = [torch.Generator(device=\"cuda\").manual_seed(config.seed)]\n",
"else:\n",
" generator = [torch.Generator(device=\"cuda\")]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating the Diffusion Pipelines\n",
"\n",
"For performing text-conditional image generation, we use the `diffusers` library to define the diffusion pipelines corresponding to the base SDXL model and the SDXL refinement model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pipe = DiffusionPipeline.from_pretrained(\n",
" config.stable_diffusion_checkpoint,\n",
" torch_dtype=torch.float16,\n",
" variant=\"fp16\",\n",
" use_safetensors=True,\n",
" scheduler=EulerDiscreteScheduler(**config.scheduler_kwargs),\n",
")\n",
"\n",
"if config.offload_to_cpu:\n",
" pipe.enable_model_cpu_offload()\n",
"else:\n",
" pipe.to(\"cuda\")\n",
"\n",
"if config.compile_model:\n",
" pipe.unet = torch.compile(pipe.unet, mode=\"reduce-overhead\", fullgraph=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if config.prompt_2 == \"\" and config.negative_prompt_2 == \"\":\n",
" base_compel = Compel(\n",
" tokenizer=[pipe.tokenizer, pipe.tokenizer_2],\n",
" text_encoder=[pipe.text_encoder, pipe.text_encoder_2],\n",
" returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,\n",
" requires_pooled=[False, True]\n",
" )\n",
"\n",
" base_positive_prompt_embeds, base_positive_prompt_pooled = base_compel(config.prompt)\n",
" base_negative_prompt_embeds, base_negative_prompt_pooled = base_compel(config.negative_prompt)\n",
" base_positive_prompt_embeds, base_negative_prompt_embeds = base_compel.pad_conditioning_tensors_to_same_length([\n",
" base_positive_prompt_embeds, base_negative_prompt_embeds\n",
" ])\n",
"else:\n",
" base_compel_1 = Compel(\n",
" tokenizer=pipe.tokenizer,\n",
" text_encoder=pipe.text_encoder,\n",
" returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,\n",
" requires_pooled=False,\n",
" )\n",
"\n",
" base_positive_prompt_embeds_1 = base_compel_1(config.prompt_1)\n",
" base_negative_prompt_embeds_1 = base_compel_1(config.negative_prompt_1)\n",
" \n",
" base_compel_2 = Compel(\n",
" tokenizer=pipe.tokenizer_2,\n",
" text_encoder=pipe.text_encoder_2,\n",
" returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,\n",
" requires_pooled=True,\n",
" )\n",
"\n",
" base_positive_prompt_embeds_2, base_positive_prompt_pooled = base_compel_2(config.prompt_2)\n",
" base_negative_prompt_embeds_2, base_negative_prompt_pooled = base_compel_2(config.negative_prompt_2)\n",
" \n",
" (\n",
" base_positive_prompt_embeds_2, base_negative_prompt_embeds_2\n",
" ) = base_compel_2.pad_conditioning_tensors_to_same_length([\n",
" base_positive_prompt_embeds_2, base_negative_prompt_embeds_2\n",
" ])\n",
" \n",
" base_positive_prompt_embeds = torch.cat((base_positive_prompt_embeds_1, base_positive_prompt_embeds_2), dim=-1)\n",
" base_negative_prompt_embeds = torch.cat((base_negative_prompt_embeds_1, base_negative_prompt_embeds_2), dim=-1)\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Text-to-Image Generation\n",
"\n",
"Now, we pass the embeddings and pooled prompts to the Stable Diffusion XL pipeline."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"image = pipe(\n",
" prompt_embeds=base_positive_prompt_embeds,\n",
" pooled_prompt_embeds=base_positive_prompt_pooled,\n",
" negative_prompt_embeds=base_negative_prompt_embeds,\n",
" negative_pooled_prompt_embeds=base_negative_prompt_pooled,\n",
" output_type=\"pil\",\n",
" num_inference_steps=config.num_inference_steps,\n",
" generator=generator,\n",
").images[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Logging the Images to Weights & Biases\n",
"\n",
"Now, we log the images to Weights & Biases. This enables us to:\n",
"\n",
"- Visualize our generations\n",
"- Examine the generated images across different images\n",
"- Ensure reproducibility of the experiments"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"table = wandb.Table(columns=[\n",
" \"Prompt-1\",\n",
" \"Prompt-2\",\n",
" \"Negative-Prompt-1\",\n",
" \"Negative-Prompt-2\",\n",
" \"Generated-Image\"\n",
"])\n",
"\n",
"image = wandb.Image(image)\n",
"\n",
"table.add_data(\n",
" config.prompt_1,\n",
" config.prompt_2,\n",
" config.negative_prompt_1,\n",
" config.negative_prompt_2,\n",
" image,\n",
")\n",
"wandb.log({\n",
" \"Generated-Image\": image,\n",
" \"Text-to-Image\": table\n",
"})\n",
"wandb.finish()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here's how you can control your prompts using Compel and manage them using Weights & Biases 👇\n",
"\n",
"![](https://i.imgur.com/iUQH9XR.png)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"include_colab_link": true,
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}