-
Notifications
You must be signed in to change notification settings - Fork 20
RIFE
WolframRhodium edited this page Nov 9, 2023
·
7 revisions
RIFE is a Real-time Intermediate Flow Estimation algorithm for video frame interpolation. It supports arbitrary-timestep interpolation between a pair of inputs.
Link:
Includes these models:
- v4.0, v4.2, v4.3, v4.4, v4.5, v4.6, v4.7, v4.8, v4.9, v4.10: RGB frame interpolation
-
block_w
andblock_h
(tile size) must be multiples of32 / scale
.
In order to simplify usage, we provided a Python wrapper module vsmlrt:
from vsmlrt import RIFE, RIFEModel, Backend
src = core.std.BlankClip(format=vs.RGBS)
# backend could be:
# - CPU Backend.OV_CPU(): the recommended CPU backend; generally faster than ORT-CPU.
# - CPU Backend.ORT_CPU(num_streams=1, verbosity=2): vs-ort cpu backend.
# - GPU Backend.ORT_CUDA(device_id=0, cudnn_benchmark=True, num_streams=1, verbosity=2)
# - use device_id to select device
# - set cudnn_benchmark=False to reduce script reload latency when debugging, but with slight throughput performance penalty.
# - GPU Backend.TRT(fp16=True, device_id=0, num_streams=1): TensorRT runtime, the fastest NV GPU runtime.
flt = RIFE(src, model=RIFEModel.v4_4, backend=Backend.ORT_CUDA())
not recommended
Measurements: FPS / Device Memory (MB)
Device memory:
- GPU: device memory including context
Software: VapourSynth R60, Windows Server 2019, Graphics Driver 526.47.
Input size: 1920x1088
- vs-mlrt v12
Model | [1] ort-cuda | [1] trt | [1] ort-cuda (2 streams) | [1] trt (2 streams) |
---|---|---|---|---|
v4.4 | 53.62 / 1771 | 71.30 / 626 | 83.34 / 2926 | 107.3 / 962 |
- Runtimes
- Models
- Device-specific benchmarks
- NVIDIA GeForce RTX 4090
- NVIDIA GeForce RTX 3090
- NVIDIA GeForce RTX 2080 Ti
- NVIDIA Quadro P6000
- AMD Radeon RX 7900 XTX
- AMD Radeon Pro V620
- AMD Radeon Pro V520
- AMD Radeon VII
- AMD EPYC Zen4
- Intel Core Ultra 7 155H
- Intel Arc A380
- Intel Arc A770
- Intel Data Center GPU Flex 170
- Intel Data Center GPU Max 1100
- Intel Xeon Sapphire Rapids