Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Network fidelity #158

Merged
merged 14 commits into from
Jul 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 71 additions & 0 deletions scripts/compare_skims.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
# %%
import pandas as pd
import openmatrix as omx
from pathlib import Path

import numpy as np

network_fid_path = Path(
r"Z:\MTC\US0024934.9168\Task_3_runtime_improvements\3.1_network_fidelity\run_result"
)
# network_fid_path = Path(r"D:\TEMP\TM2.2.1.1-0.05")

# %%


def read_matrix_as_long_df(path: Path, run_name):
run = omx.open_file(path, "r")
am_time = np.array(run["AM_da_time"])
index_lables = list(range(am_time.shape[0]))
return (
pd.DataFrame(am_time, index=index_lables, columns=index_lables)
.stack()
.rename(run_name)
.to_frame()
)


a = read_matrix_as_long_df(
r"D:\TEMP\TM2.2.1.1-New_network_rerun\TM2.2.1.1_new_taz\skim_matrices\highway\HWYSKMAM_taz.omx",
"test",
)
# %%
all_skims = []
for skim_matrix_path in network_fid_path.rglob("*AM_taz.omx"):
print(skim_matrix_path)
run_name = skim_matrix_path.parts[6]
all_skims.append(read_matrix_as_long_df(skim_matrix_path, run_name))

all_skims = pd.concat(all_skims, axis=1)
# %%
# %%%
all_skims.to_csv(
r"Z:\MTC\US0024934.9168\Task_3_runtime_improvements\3.1_network_fidelity\output_summaries\skim_data\skims.csv"
)
# %%
# %%
import geopandas as gpd
from importlib import Path
import pandas as pd

# %%
output_paths_to_consolidate = Path(r"D:\TEMP\output_summaries")
all_files = []
for file in output_paths_to_consolidate.glob("*_roadway_network.geojson"):
run_name = file.name[0:5]
print(run_name)
specific_run = gpd.read_file(file)
specific_run["run_number"] = run_name
all_files.append(specific_run)
# %%
all_files = pd.concat(all_files)
# %%
all_files.to_file(output_paths_to_consolidate / "all_runs_concat.gdb")

# %%

all_files.drop(columns="geometry").to_csv(output_paths_to_consolidate / "data.csv")
# %%
to_be_shape = all_files[["geometry", "model_link_id"]].drop_duplicates()
print("outputting")
to_be_shape.to_file(output_paths_to_consolidate / "geom_package")
238 changes: 238 additions & 0 deletions scripts/compile_model_runs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,238 @@
# %%
import geopandas as gpd
import pandas as pd
import numpy as np
from pathlib import Path
from tqdm import tqdm
from shapely.geometry import LineString

input_dir = Path(
r"Z:\MTC\US0024934.9168\Task_3_runtime_improvements\3.1_network_fidelity\run_result"
)
output_dir = input_dir / "consolidated_3"


# in_file = next(input_dir.rglob('emme_links.shp'))
# print("reading", in_file)
# input2 = gpd.read_file(in_file, engine="pyogrio", use_arrow=True)
# #%%
# print("writing")
# input[["#link_id", "geometry"]].to_file(output_dir / "test_geom.geojson")

scenarios_to_consolidate = (11, 12, 13, 14, 15)
runs_to_consolidate = (3, 4)
# %%


def read_file_and_tag(
path: Path,
columns_to_filter=(
"@ft",
"VOLAU",
"@capacity",
"run_number",
"scenario_number",
"#link_id",
"geometry",
),
) -> pd.DataFrame:
scenario = file.parent.stem
scenario_number = int(scenario.split("_")[-1])
if scenario_number not in scenarios_to_consolidate:
return None

run = file.parent.parent.stem
run_number = int(run.split("_")[-1])
if run_number not in runs_to_consolidate:
return None

return_gdf = gpd.read_file(path, engine="pyogrio")

return_gdf["scenario"] = scenario
return_gdf["scenario_number"] = scenario_number
return_gdf["run"] = run
return_gdf["run_number"] = run_number

if "VOLAU" not in return_gdf.columns:
print(return_gdf.columns)
print("... No VOLAU, filling with zero")
return_gdf["VOLAU"] = 0

return_gdf = return_gdf[list(columns_to_filter)]

# assert return_gdf["#link_id"].is_unique

return return_gdf


def get_linestring_direction(linestring: LineString) -> str:
if not isinstance(linestring, LineString) or len(linestring.coords) < 2:
raise ValueError("Input must be a LineString with at least two coordinates")

start_point = linestring.coords[0]
end_point = linestring.coords[-1]

delta_x = end_point[0] - start_point[0]
delta_y = end_point[1] - start_point[1]

if abs(delta_x) > abs(delta_y):
if delta_x > 0:
return "East"
else:
return "West"
else:
if delta_y > 0:
return "North"
else:
return "South"


# %%

print("Reading Links...", end="")
all_links = []
for file in tqdm(input_dir.rglob("run_*/Scenario_*/emme_links.shp")):
print(file)
all_links.append(read_file_and_tag(file))
links_table = pd.concat(all_links)

print("done")
# %%
scen_map = {11: "EA", 12: "AM", 13: "MD", 14: "PM", 15: "EV"}


def get_return_first_gem(row):
geom_columns = [col for col in row.index if "geometry" in col]
return [
row[col]
for col in geom_columns
if (row[col] is not None) and (row[col] != np.NAN)
][0]


def combine_tables(dfs, columns_same):
return_frame = dfs[0][columns_same]

for df in dfs:
run_number = df["run_number"].iloc[0]

scen_number = df["scenario_number"].iloc[0]
scen_number = scen_map[scen_number]
df["saturation"] = df["VOLAU"] / df["@capacity"]

df = df[["#link_id", "@capacity", "VOLAU", "geometry", "@ft"]].rename(
columns={
"@capacity": f"capacity_run{run_number}_scen{scen_number}",
"VOLAU": f"@volau_run{run_number}_scen{scen_number}",
"saturation": f"@saturation_run{run_number}_scen{scen_number}",
"geometry": f"geometry_run{run_number}_scen{scen_number}",
"@ft": f"ft_run{run_number}_scen{scen_number}",
}
)
# if there are link_ids that are not in the right frame
return_frame = return_frame.merge(
df, how="outer", on="#link_id", validate="1:1"
)
geometry = return_frame.apply(get_return_first_gem, axis=1)
# remove geometries that are not main geometry
return_frame = return_frame.drop(
columns=[col for col in return_frame.columns if "geometry_" in col]
)
return_frame["geometry"] = geometry

return return_frame


all_links_no_none = [
links
for links in all_links
if (links is not None) and (links["#link_id"].is_unique)
]
links_wide_table = combine_tables(all_links_no_none, ["#link_id", "geometry"])

links_wide_table["direction"] = links_wide_table["geometry"].apply(
get_linestring_direction
)
# %%
ft_cols = [col for col in links_wide_table.columns if "ft_" in col]

links_wide_table["ft"] = links_wide_table[ft_cols].max(axis=1)
links_wide_table = links_wide_table.drop(columns=ft_cols)

# %%
links_wide_table.to_file(
Path(
r"Z:\MTC\US0024934.9168\Task_3_runtime_improvements\3.1_network_fidelity\output_summaries\all_links_data"
)
/ "all_data_wide.geojson"
)


# %%
num_iter = {(3, 11): 3, (3, 12): 10, (3, 13): 10, (3, 14): 19, (3, 15): 4, (4, 12): 20}
# %%
all_links_no_none = [
links for links in all_links if (links is not None)
] # and (links["#link_id"].is_unique)]
for df in all_links_no_none:
df["saturation"] = df["VOLAU"] / df["@capacity"]
ft6_sat = [
(
link["run_number"].iloc[0],
link["scenario_number"].iloc[0],
(link.loc[link["@ft"] == 6, "saturation"] > 1).mean(),
)
for link in all_links_no_none
]

y = [val for val in num_iter.values()]
x = [x[-1] for x in ft6_sat]
col = [val[0] for val in num_iter.keys()]

# %%
import matplotlib.pyplot as plt

plt.scatter(x, y, c=col)

# Calculate the trendline
z = np.polyfit(x, y, 1)
p = np.poly1d(z)

# Plot the trendline
plt.plot(x, p(x), color="red")

plt.xlabel("proportion of ft 6 with saturation > 1")
plt.ylabel("number of iterations to solve")
plt.title("Number of iterations to solve (relative gap = 0.05)")
plt.show()
# %%
import matplotlib.pyplot as plt

data = [links_wide_table[col] for col in links_wide_table.iloc[:, 2:].columns]

fig = plt.boxplot(data)
fig.show()

# --------------------------------------------------------------------------
# %%
links_table["direction"] = links_table["geometry"].apply(get_linestring_direction)
# %%
links_table.to_file(output_dir / "all_data.geojson", index=False)


# %%
def get_link_counts(df: pd.DataFrame):
ret_val = df.value_counts("@ft").sort_index().to_frame().T
total = ret_val.sum(axis=1)
total_minus_8 = total - ret_val[8.0].iloc[0]
ret_val["total"] = total
ret_val["total_minus_8"] = total_minus_8

ret_val["run_number"] = df["run_number"].iloc[0]
ret_val["scenario_number"] = df["scenario_number"].iloc[0]
return ret_val


pd.concat([get_link_counts(df) for df in all_links]).sort_values(
by=["run_number", "scenario_number"]
)
6 changes: 3 additions & 3 deletions tm2py/components/network/create_tod_scenarios.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ def run(self):
# emme_app = self._emme_manager.project(project_path)
# self._emme_manager.init_modeller(emme_app)
with self._setup():
# self._create_highway_scenarios()
self._create_highway_scenarios()
self._create_transit_scenarios()

@_context
Expand Down Expand Up @@ -101,7 +101,7 @@ def _create_highway_scenarios(self):
{
"scenarios": 1 + n_time_periods,
"full_matrices": 9999,
"extra_attribute_values": 60000000,
"extra_attribute_values": 100000000,
}
)
# create VDFs & set cross-reference function parameters
Expand Down Expand Up @@ -628,7 +628,7 @@ def _set_capclass(network):
area_type = link["@area_type"]
if area_type < 0:
link["@capclass"] = -1
elif (link["@ft"] == 99) & (link["@assignable"] == 1):
elif link["@ft"] == 99:
link["@capclass"] = 10 * area_type + 7
else:
link["@capclass"] = 10 * area_type + link["@ft"]
Expand Down
Loading