Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Materialize batch_matmul to batch_mmt4d #14731

Merged
merged 3 commits into from
Aug 25, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -262,6 +262,43 @@ lowerOpWithEncoding(RewriterBase &rewriter, linalg::MatmulOp matmulOp,
return mmt4DOp;
}

/// Utility method to convert from `linalg.batch_matmul` with
/// - lhs encoding with role=LHS
/// - rhs encoding with role=RHS
/// - result encoding with role=RESULT
/// to linalg.batch_mmt4d op.
static FailureOr<Operation *>
lowerOpWithEncoding(RewriterBase &rewriter, linalg::BatchMatmulOp batchMatmulOp,
pzread marked this conversation as resolved.
Show resolved Hide resolved
ValueRange convertedInputOperands,
ValueRange convertedOutputOperands, MaterializeEncodingFn,
MaterializeEncodingValueFn) {
if (!batchMatmulOp.hasTensorSemantics())
return failure();
auto inputs = batchMatmulOp.getDpsInputOperands();
auto outputs = batchMatmulOp.getDpsInitOperands();
auto lhsEncoding =
getEncodingAttr(inputs[0]->get().getType().cast<RankedTensorType>());
auto rhsEncoding =
getEncodingAttr(inputs[1]->get().getType().cast<RankedTensorType>());
auto resultEncoding =
getEncodingAttr(outputs[0]->get().getType().cast<RankedTensorType>());
if (!lhsEncoding || !rhsEncoding || !resultEncoding) {
return failure();
}
if (lhsEncoding.getRole().getValue() !=
mlir::iree_compiler::IREE::LinalgExt::EncodingRole::LHS ||
rhsEncoding.getRole().getValue() !=
mlir::iree_compiler::IREE::LinalgExt::EncodingRole::RHS ||
resultEncoding.getRole().getValue() !=
mlir::iree_compiler::IREE::LinalgExt::EncodingRole::RESULT) {
return failure();
}
Operation *batchMmt4DOp = rewriter.create<linalg::BatchMmt4DOp>(
batchMatmulOp.getLoc(), convertedOutputOperands[0].getType(),
convertedInputOperands, convertedOutputOperands);
return batchMmt4DOp;
}

/// Utility method to convert from `linalg.fill` on `tensor` type with encoding
/// to fill of the materialized type
static FailureOr<Operation *>
Expand Down Expand Up @@ -518,6 +555,7 @@ void populateMaterializeEncodingPatterns(
// Add all patterns for converting from encoded type to the materialized type
patterns.insert<MaterializeDPSOperation<linalg::FillOp>,
MaterializeDPSOperation<linalg::MatmulOp>,
MaterializeDPSOperation<linalg::BatchMatmulOp>,
MaterializeOperation<tensor::EmptyOp>,
SetEncodingOpToPackOpConversion,
UnsetEncodingOpToPackOpConversion>(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -240,3 +240,101 @@ func.func @pack_unpack_batch_matmul_result(%arg0 : tensor<?x?x?xf32>) -> tensor<
// CHECK: %[[UNPACK_DEST:.+]] = tensor.empty(%[[D0]], %[[D1]], %[[D2]]) : tensor<?x?x?xf32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[PACK]] inner_dims_pos = [1, 2] inner_tiles = [8, 8] into %[[UNPACK_DEST]]
// CHECK: return %[[UNPACK]]

// -----

func.func @pack_batch_matmul(%arg0 : tensor<128x80x32xf32>, %arg1 : tensor<128x32x320xf32>, %arg2 : tensor<128x80x320xf32>) -> tensor<128x80x320xf32> {
%0 = iree_linalg_ext.set_encoding %arg0 : tensor<128x80x32xf32> -> tensor<128x80x32xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = LHS>>
%1 = iree_linalg_ext.set_encoding %arg1 : tensor<128x32x320xf32> -> tensor<128x32x320xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RHS>>
%2 = iree_linalg_ext.set_encoding %arg2 : tensor<128x80x320xf32> -> tensor<128x80x320xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>
%3 = linalg.batch_matmul ins(%0, %1 : tensor<128x80x32xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = LHS>>, tensor<128x32x320xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RHS>>)
outs(%2 : tensor<128x80x320xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>) -> tensor<128x80x320xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>
%4 = iree_linalg_ext.unset_encoding %3 : tensor<128x80x320xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>> -> tensor<128x80x320xf32>
return %4 : tensor<128x80x320xf32>
}
// CHECK: func @pack_batch_matmul(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<128x80x32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<128x32x320xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<128x80x320xf32>
// CHECK: %[[PACK_LHS:.+]] = tensor.pack
// CHECK-SAME: %[[ARG0]]
// CHECK: %[[PACK_RHS:.+]] = tensor.pack
// CHECK-SAME: %[[ARG1]]
// CHECK: %[[PACK_RESULT:.+]] = tensor.pack
// CHECK-SAME: %[[ARG2]]
// CHECK: %[[BATCH_MMT4D:.+]] = linalg.batch_mmt4d
// CHECK-SAME: ins(%[[PACK_LHS]], %[[PACK_RHS]] :
// CHECK-SAME: outs(%[[PACK_RESULT]] :
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[BATCH_MMT4D]]
// CHECK: return %[[UNPACK]]

// -----

func.func @pack_batch_matmul_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>, %arg2 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
%0 = iree_linalg_ext.set_encoding %arg0 : tensor<?x?x?xf32> -> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = LHS>>
%1 = iree_linalg_ext.set_encoding %arg1 : tensor<?x?x?xf32> -> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RHS>>
%2 = iree_linalg_ext.set_encoding %arg2 : tensor<?x?x?xf32> -> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>
%3 = linalg.batch_matmul ins(%0, %1 : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = LHS>>, tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RHS>>)
outs(%2 : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>) -> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>
%4 = iree_linalg_ext.unset_encoding %3 : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>> -> tensor<?x?x?xf32>
return %4 : tensor<?x?x?xf32>
}
// CHECK: func @pack_batch_matmul_dynamic(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?x?xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<?x?x?xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<?x?x?xf32>
// CHECK: %[[PACK_LHS:.+]] = tensor.pack
// CHECK-SAME: %[[ARG0]]
// CHECK: %[[PACK_RHS:.+]] = tensor.pack
// CHECK-SAME: %[[ARG1]]
// CHECK: %[[PACK_RESULT:.+]] = tensor.pack
// CHECK-SAME: %[[ARG2]]
// CHECK: %[[BATCH_MMT4D:.+]] = linalg.batch_mmt4d
// CHECK-SAME: ins(%[[PACK_LHS]], %[[PACK_RHS]] :
// CHECK-SAME: outs(%[[PACK_RESULT]] :
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[BATCH_MMT4D]]
// CHECK: return %[[UNPACK]]

// -----

func.func @pack_batch_matmul_fill_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%cst = arith.constant 0.0 : f32
%d0 = tensor.dim %arg0, %c0 : tensor<?x?x?xf32>
%d1 = tensor.dim %arg0, %c1 : tensor<?x?x?xf32>
%d2 = tensor.dim %arg1, %c2 : tensor<?x?x?xf32>
%0 = iree_linalg_ext.set_encoding %arg0 : tensor<?x?x?xf32> -> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = LHS>>
%1 = iree_linalg_ext.set_encoding %arg1 : tensor<?x?x?xf32> -> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RHS>>
%2 = tensor.empty(%d0, %d1, %d2) : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>
%3 = linalg.fill ins(%cst : f32) outs(%2 : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>)
-> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>
%4 = linalg.batch_matmul ins(%0, %1 : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = LHS>>, tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RHS>>)
outs(%3 : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>) -> tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>>
%5 = iree_linalg_ext.unset_encoding %4 : tensor<?x?x?xf32, #iree_linalg_ext.encoding<user = BATCH_MATMUL_F32F32F32, role = RESULT>> -> tensor<?x?x?xf32>
return %5 : tensor<?x?x?xf32>
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<()[s0] -> (s0 ceildiv 8)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<()[s0] -> (s0 ceildiv 4)>
// CHECK: func @pack_batch_matmul_fill_dynamic(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?x?xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<?x?x?xf32>
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
// CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index
// CHECK-DAG: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK-DAG: %[[D1:.+]] = tensor.dim %[[ARG0]], %[[C1]]
// CHECK-DAG: %[[D2:.+]] = tensor.dim %[[ARG1]], %[[C2]]
// CHECK-DAG: %[[OUT_D1:.+]] = affine.apply #[[MAP0]]()[%[[D1]]]
// CHECK-DAG: %[[OUT_D2:.+]] = affine.apply #[[MAP0]]()[%[[D2]]]
// CHECK-DAG: %[[PACK_LHS:.+]] = tensor.pack %[[ARG0]]
// CHECK-DAG: %[[PACK_RHS:.+]] = tensor.pack %[[ARG1]]
// CHECK-DAG: %[[EMPTY:.+]] = tensor.empty(%[[D0]], %[[OUT_D1]], %[[OUT_D2]]) : tensor<?x?x?x8x8xf32>
// CHECK: %[[FILL:.+]] = linalg.fill
// CHECK-SAME: outs(%[[EMPTY]] : tensor<?x?x?x8x8xf32>)
// CHECK: %[[BATCH_MMT4D:.+]] = linalg.batch_mmt4d
// CHECK-SAME: ins(%[[PACK_LHS]], %[[PACK_RHS]] :
// CHECK-SAME: outs(%[[FILL]] :
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[BATCH_MMT4D]]
// CHECK: return %[[UNPACK]]
Loading