Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make tests deterministic #16910

Merged
merged 5 commits into from
Sep 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 12 additions & 14 deletions python/cudf/cudf/tests/test_array_function.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,9 +33,10 @@ def __array_function__(self, *args, **kwargs):

missing_arrfunc_reason = "NEP-18 support is not available in NumPy"

np.random.seed(0)


@pytest.mark.skipif(missing_arrfunc_cond, reason=missing_arrfunc_reason)
@pytest.mark.parametrize("np_ar", [np.random.random(100)])
@pytest.mark.parametrize(
"func",
[
Expand All @@ -47,7 +48,8 @@ def __array_function__(self, *args, **kwargs):
lambda x: np.linalg.norm(x),
],
)
def test_array_func_cudf_series(np_ar, func):
def test_array_func_cudf_series(func):
np_ar = np.random.random(100)
cudf_ser = cudf.Series(np_ar)
expect = func(np_ar)
got = func(cudf_ser)
Expand All @@ -58,9 +60,6 @@ def test_array_func_cudf_series(np_ar, func):


@pytest.mark.skipif(missing_arrfunc_cond, reason=missing_arrfunc_reason)
@pytest.mark.parametrize(
"pd_df", [pd.DataFrame(np.random.uniform(size=(100, 10)))]
)
@pytest.mark.parametrize(
"func",
[
Expand All @@ -74,17 +73,15 @@ def test_array_func_cudf_series(np_ar, func):
lambda x: np.prod(x, axis=1),
],
)
def test_array_func_cudf_dataframe(pd_df, func):
def test_array_func_cudf_dataframe(func):
pd_df = pd.DataFrame(np.random.uniform(size=(100, 10)))
cudf_df = cudf.from_pandas(pd_df)
expect = func(pd_df)
got = func(cudf_df)
assert_eq(expect, got)


@pytest.mark.skipif(missing_arrfunc_cond, reason=missing_arrfunc_reason)
@pytest.mark.parametrize(
"pd_df", [pd.DataFrame(np.random.uniform(size=(100, 10)))]
)
@pytest.mark.parametrize(
"func",
[
Expand All @@ -93,21 +90,22 @@ def test_array_func_cudf_dataframe(pd_df, func):
lambda x: np.linalg.det(x),
],
)
def test_array_func_missing_cudf_dataframe(pd_df, func):
def test_array_func_missing_cudf_dataframe(func):
pd_df = pd.DataFrame(np.random.uniform(size=(100, 10)))
cudf_df = cudf.from_pandas(pd_df)
with pytest.raises(TypeError):
func(cudf_df)


@pytest.mark.skipif(missing_arrfunc_cond, reason=missing_arrfunc_reason)
@pytest.mark.parametrize("np_ar", [np.random.random(100)])
@pytest.mark.parametrize(
"func",
[
lambda x: np.unique(x),
],
)
def test_array_func_cudf_index(np_ar, func):
def test_array_func_cudf_index(func):
np_ar = np.random.random(100)
cudf_index = cudf.Index(cudf.Series(np_ar))
expect = func(np_ar)
got = func(cudf_index)
Expand All @@ -118,7 +116,6 @@ def test_array_func_cudf_index(np_ar, func):


@pytest.mark.skipif(missing_arrfunc_cond, reason=missing_arrfunc_reason)
@pytest.mark.parametrize("np_ar", [np.random.random(100)])
@pytest.mark.parametrize(
"func",
[
Expand All @@ -127,7 +124,8 @@ def test_array_func_cudf_index(np_ar, func):
lambda x: np.linalg.det(x),
],
)
def test_array_func_missing_cudf_index(np_ar, func):
def test_array_func_missing_cudf_index(func):
np_ar = np.random.random(100)
cudf_index = cudf.Index(cudf.Series(np_ar))
with pytest.raises(TypeError):
func(cudf_index)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -236,6 +236,7 @@ def test_avro_compression(rows, codec):
},
],
rows,
seed=0,
)
expected_df = cudf.DataFrame.from_arrow(df)

Expand Down Expand Up @@ -599,7 +600,7 @@ def test_avro_reader_multiblock(
else:
assert dtype in ("float32", "float64")
avro_type = "float" if dtype == "float32" else "double"

np.random.seed(0)
# We don't use rand_dataframe() here, because it increases the
# execution time of each test by a factor of 10 or more (it appears
# to use a very costly approach to generating random data).
Expand Down
7 changes: 7 additions & 0 deletions python/cudf/cudf/tests/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -2470,6 +2470,7 @@ def test_groupby_2keys_rank(nelem, method, ascending, na_option, pct):
],
rows=nelem,
use_threads=False,
seed=0,
)
pdf = t.to_pandas()
pdf.columns = ["x", "y", "z"]
Expand Down Expand Up @@ -2602,6 +2603,7 @@ def test_groupby_shift_row_mixed_numerics(
],
rows=nelem,
use_threads=False,
seed=0,
)
pdf = t.to_pandas()
gdf = cudf.from_pandas(pdf)
Expand Down Expand Up @@ -2639,6 +2641,7 @@ def test_groupby_shift_row_mixed(nelem, shift_perc, direction):
],
rows=nelem,
use_threads=False,
seed=0,
)
pdf = t.to_pandas()
gdf = cudf.from_pandas(pdf)
Expand Down Expand Up @@ -2687,6 +2690,7 @@ def test_groupby_shift_row_mixed_fill(
],
rows=nelem,
use_threads=False,
seed=0,
)
pdf = t.to_pandas()
gdf = cudf.from_pandas(pdf)
Expand Down Expand Up @@ -2732,6 +2736,7 @@ def test_groupby_shift_row_zero_shift(nelem, fill_value):
],
rows=nelem,
use_threads=False,
seed=0,
)
gdf = cudf.from_pandas(t.to_pandas())

Expand Down Expand Up @@ -2782,6 +2787,7 @@ def test_groupby_diff_row_mixed_numerics(nelem, shift_perc, direction):
],
rows=nelem,
use_threads=False,
seed=0,
)
pdf = t.to_pandas()
gdf = cudf.from_pandas(pdf)
Expand Down Expand Up @@ -2815,6 +2821,7 @@ def test_groupby_diff_row_zero_shift(nelem):
],
rows=nelem,
use_threads=False,
seed=0,
)
gdf = cudf.from_pandas(t.to_pandas())

Expand Down
2 changes: 1 addition & 1 deletion python/dask_cudf/dask_cudf/tests/test_reductions.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@


def _make_random_frame(nelem, npartitions=2):
np.random.seed(0)
df = pd.DataFrame(
{
"x": np.random.randint(0, 5, size=nelem),
Expand All @@ -38,7 +39,6 @@ def wrapped(series):
@pytest.mark.parametrize("reducer", _reducers)
def test_series_reduce(reducer):
reducer = _get_reduce_fn(reducer)
np.random.seed(0)
size = 10
df, gdf = _make_random_frame(size)

Expand Down
Loading